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FIGURES

1. Quantum Confinement and Resultant Quantization of Energy Eigenvalues (1)

2. Sawtooth Superlattice with and without Strong External Reverse Blas

a. Zero-field sawtooth superlattice
b. Strong external reverse bias Fap, resulting in staircase superlattice

4. Transfer Matrix at a Potential Step

5. Transfer Matrix for a Single Step Barrler: E » Vg

a. Transmission coefficient for uniform effective mass
b. Transmission coefficient for different effective masses inside and outside the barrier

6. Tunneling In a Single Step Barrier: E < Vg
a. Transmission coetfficient for uniform effective masses
b. Transmission coefficient for different effective masses inside and outside the barrier

~

. Transfer Matrix for a Single Step Barrier: E = Vp

@

. Multiple Step Barrier (MSB): N periods

9. Multiple Step Barrler with Three Perlods
The single resonance at Eg is split into two levels at Eg + AE by coupling between the two wells.



10. The Difference Between Multiple Step Barriers and Multiple Quantum Wells
(MQW).

For energies E below the top of the barriers or well, respectively, MSB's can have only virtual, or

quasi-bound, states, while MQW's can have true bound states. Both types of heterostructure can

support resonances for E greater than the barrier or well height.

11. Bound States and Resonances of a Single Quantum Well
a. E > 0: Transmission coefficients for uniform and varying effective masses. Resonances in T.
b. E < 0: Criterion for bound states. Eigenvalue condition on My gives bound states.

12. Transfer Matrix Method Applled to Arbitrary, Real Potential V(z).
The potential is broken into intervals Az wide. Transfer matrices M; at each step are multiplied to

give overall transfer matrix M.

13. Single Quantum Well and Barrler In Uniform Electric Field Fap

14. Transfer Matrix Method Applled to Finding Bound States of a Single
Quantum Well In Uniform Electric Fleld Fqp

The region inside the well is divided into intervals where plane-wave transfer matrices are

calculated. In the regions outside the well, the solutions of the Schroedinger equation are the Airy

functions.

15. The Airy Function and Derlvative with Negative Argument
a. Ai(-x)
b. Ai'(-x)

16. The Balry Function and Derivative with Negative Argument
a. Bi(-x)
b. Bi'(-x)

17. Single Quantum Well In a Localized Electric Fleld.
The applied field is zero far from the well.

18. Deformation of a Single Quantum Well in a Localized Electric Field.
The applied field shifts the bound and quasi-bound levels to lower energy.
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a. Low field strength, with true bound states at Eg and E;
b. Moderate field strength, with one true bound state at Eg - A, and a quasi-bound state at Eq - A.

¢. High field strength, only quasi-bound states remain.

19. Transfer Matrix Method Applied to Single Quantum Well in Localized Field
The well and a small surrounding area over which the field extends are broken into intervals. At
each step a transfer matrix M; is calculated; the overall transfer matrix M is the product of all the M;.

20. Transfer Matrix Method Applied to Multiple Step Barrier with N Periods In an
External, Localized Electric Fleld Fap.

21. Transfer Matrix Method Applied to Sawtooth Superiattice with N Periods in
an External, Localized Electric Field Fap.

22. Energy Band Structure of Pure GaAs (<100> and <111> directions) (33)

23. Complex Energy Band Structures of pure GaAs and AlAs (34)
i. (110) interface: a. GaAs b. AlAs
ii. (100) interface: a. GaAs b. AlAs

24. Energy Gap In Al(x)Ga(1-x)As as a Function of AlAs Mole Fraction x (19)
The x-dependence of the direct conduction band T'{¢ is shown by the solid line; that of the
indirect gap Xi¢ by the dashed line. The direct and indirect minima are equal at x = 0.37

25. The Fraction of Conduction Electrons In 1 of Al(x)Ga(1-x)As as a Function

of AlAs Mole Fraction x.(18)
Data are taken at 300 K. Dotted line is for degenerate case with N = 4x1017 cm3 ; solid line is for

nondegenerate case with N = 4x1016 cm-3,

26. Band-Edge Alignments at GaAs-Al(x)Ga(1-x)As Heterojunctions (R. Miller,

ATT-Bell Laboratories)
a. AE¢, conduction band misalignment
b. AE,, valence band misalignment

27. Esaki-Tsu Multiple Step Barrier Geometry (11)
a. Zero applied electric field
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b. Applied field strength F = F55, over the length | of the MSB

28. T-E Data for Single Step Barrler
Barrier is 10 nm wide, 0.33 eV high. Effective mass is uniform and equal to free electronic mass

Mmp.

29. T-E Data for Single GaAs-Al(0.4)Ga(0.6)As Step Barrier
Barrier is 10 nm wide and 0.33eV high. Effective mass is mj, = 0.0871 inside the barrier, mot =

0.0636 outside. - I

30. T-E Data for Single Step Barrlers 10nm Wide and 0.33 eV ng h.

a. Superposed T-E curves for GaAs-Al(0. 4)Ga(0 6)As barrier, and barner with unTorm effective

mass Mt = My everywhere. Curve 1: GaAs-Al(0.4)Ga(0.6)As, mi = 0. 0871, n Moyt = 0.0636;
Curve 0: mggf = Mg 7

b. Superposed T-E curves for GaAs-Al(0.4)Ga(0.6)As barrier, and barrier with uniform effective
mass Mgfs = 0.0636 everywhere. Curve 0: GaAs-Al(0.4)Ga(0.6)As; Curve 1: meff = 0.0636

31. Effects of Applied Electric Field on Transmission Coefficient of Single Step

Barrler.
Bamier is 10 nm wide, 0.33 eV high. Effective mass = mg everywhere.
a. Fap = 0
b. Fap =2 x10-2 eV/nm
C. Fap =5 x102 eV/inm

32. Effects of Applied Electric Fleld on Transmission Coefficlent of Single

GaAs-Al(0.4)Ga({0.6)As Step Barrler.
Barrier is 10 nm wide, 0.33 eV high. Inside the barrier mgff = 0.0871, outside the barrier megi =

0.0636. Curve 0: Fap = 0; Curve 1:Fap =2 x102 ev/nm; Curve 2: Fap =5 x1 02 eV/nm

33. Applled Fleld and Effective Mass Effects on Transmisslon Coefficient of

Single Step Barrlers.
Barriers are 10nm wide, 0.33 eV high. The two curves in each figure are for a barrier with uniform
effective mass Mgt = Mg, and a GaAs-Al(0.4)Ga(0.6)As barrier: Curve 0: metf = Mo; Curve 1. Mip =
0.0871, mgyyt = 0.0636
a. Applied field Fap = 2 x10-2 eV/nm
b. Applied field Fap =5 x10-2 eV/nm
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34. Total Transfer Matrix Element My4 for Single GaAs-Al(0.5)Ga(0.5)As
Quantum Well: Bound State.

Well is 3 nm wide, 0.4 eV deep. This calculation took account of the effective mass variation at the

well edges: the effective masses inside and outside the well are m;, = 0.094, mgyt = 0.0636. The

minimum of M1 4 gives a bound state energy of -0.197 eV below the top of the well.

35. Bound State Energy as a Function of the Effective Mass Inside Well.
Well is the same as that of Figure 34. The effective mass, however, is taken in this calculation as
0.0636 inside and outside the well. The new bound state energy is -0.217 eV below the top of

the well, instead of -0.197 eV,
Curve 0: Effective mass = 0.0636 everywhere. Eqg = -0.217 eV.
Curve 1: Effective mass = 0.094 inside the well, 0.0636 outside the well.Eg = -0.197 eV.

36. Bound States in Single Quantum Well.

Well is 3nm wide, 0.4 eV deep. Effective mass is uniform and equal to mg. The minima in M1
correspond to bound states. Using the free-electronic mass results in four bound states, in
agreement with equation 139.

37. Total Transfer Matrix Element M¢4 as a Function of Localized Fleld Strength.
Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. Each curve corresponds to a different field strength. Minima
shift to energies deeper in the well as the field strength is increased.

Curve 0: Fap =0; Curve 1: Fap=1x10"2 eV/nm; Curve 2: Fap = 2 x102 eV/inm;

Curve 3: Fap =3 x10°2 eV/nm; Curve 4: Fap = 4 x10°2 eV/nm;

Curve 5: Fap = § x102 eV/nm

38. Stark Shift of Bound State Energy Level under Localized Fleld.

Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. In this figure the Stark shift (referred to the zero-field bound
state energy) is plotted as a function of the applied field strength. The Stark shift is linear in the
field strength.

39. The Ratlo (F/E) as a Function of Energy and Applied Field Strength.
Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere; field is uniform and unrestricted. Each curve is for a different
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field strength; the maxima in the data correspond to quasi-bound states of the quantum well.
Maxima shift to energies deeper in the well as the field strength increases.

Curve 0: Fap = 1.0 x102 eV/nm; Curve 1: Fgp=1.5 x1 02 eV/nm;

Curve 2: Fap = 2.0 x102 eV/nm; Curve 3: Fap = 25 x10-2 eV/nm;

Curve 4: Fap = 3.0 x10-2 eV/nm

40. Stark Shift of Bound State Energy Level under Uniform, Unrestricted Field.
From Figure 39, the energy levels of the maxima in (F/E) are plotted as function of the applied field
strength. The bound state energies are quadratically dependent on the applied field strength.
41. Stark Shift of Bound State Energy Levels under Uniform, Unrestricted Field.
From Figure 40, the Stark shift relative to the zero-field level is plotted as a function of the applied

field strength. Also shown are the data of Austin and Jaros (41) for an identical quantum well.

42. Stark Shifts under Localized and Unrestricted Unlform Fields Compared.
From Figures 38 and 41, the Stark shifts calculated for a 3nm, 0.4 eV Al(0.5)Ga(0.5)As quantum
well are plotted together. = o

43. T-E Curves for Two-, Three-, and Flve-Barrier GaAs-Al(0.5)Ga(0.5)As

Multiple Step Barrlers.
These are the results of transfer matrix calculations for step barrier superlattices identical to those

of Esaki and Tsu (11). Barriers are 2 nm wide, 5 nm apart, and 0.5 eV hifgh'. Effective mass in the
barriers is mip = 0.094, between the barriers mgy = 0.0636. Modified connection rules are used.

Figures a, b, and ¢ are for two, three and five barriers, respectively.

44. T-E curves for Two- and Flve- Barrler Esaki-Tsu Type MSB's
The T-E curves from Figure 43 for two and five barriers superposed. Note the splitting of single

resonances into four, caused by coupling between wells.

45. T-E Curves for Two-, Three-, and Flve-Barrier MSB's Calculated By Esakl

and Tsu (11).
Note the close agreement between these curves and those of Figure 43.

46. J-V Curves for Two- and Three-Barrler GaAs-Al(0.5)Ga(0.5)As MSB's
These curves are calculated for the same MSB's whose T-E curves appear in Figure 43.

il

LT 4]

e



47. J-V Curves for Two- and Three-Barrier MSB's Calculated by Esakl and Tsu
(11).
Note the agreement between these curves and those of Figure 46.

48. T-E Curves of Two-Barrler MSB's: Influence of Effective Mass.

Both curves are for two-barrier MSB's with barriers 2 nm wide,5 nm apart, and 0.5 eV high. Curve 0
is for GaAs-Al(0.5)Ga(0.5)As MSB with effective mass variations taken into account, and Curve 1 is
for MSB with effective mass uniform and equal to mg.

49. T-E and J-V Curves of Two-Barrier MSB's: Effect of Neglecting the Effective
Mass Step at Heterojunctions.

Data are for GaAs-Al{0.5)Ga(0.5)As Esaki-Tsu-type MSB's. Figures a and b are T-E and J-V curves

respectively. In Curve 0, the effective mass is taken as uniform and equal to 0.0636. In Curve 1,

the effective mass is 0.094 inside the barriers, and 0.0636 in the wells.

50. T-E and J-V Curves for GaAs-Al{0.4)Ga(0.6)As and GaAs-Al{0.5)Ga(0.5)As
Two-Barrier MSB's: Effects of Composition

Data are for MSB's with barriers 2 nm wide, 5 nm apart. Figures a and b are T-E and J-V curves

respectively. Curve 0 is for GaAs-Al(0.4)Ga(0.6)As. Curve 1 is GaAs-Al(0.5)Ga(0.5)As.

51. T-E Curves for Sawtooth and Step Barriers Compared.
Sawtooth barrier is 10 nm wide at the base, step barrier is 10 nm wide. Both are 0.33 eV high.
Figure a. Effective mass is uniform and equal to mg. Curve 1 is for the sawtooth, Curve 2 is for the

step barrier.
Figure b. Barriers are made of GaAs-Al{0.4)Ga(0.6)As. Effective mass is 0.0636 in GaAs, 0.0871 in
Al(0.4)Ga(0.6)As. Curve 0 is for step barrier, Curve 1 is for the sawtooth.

52. T-E Curves for GaAs-Al(0.4)Ga(0.6)As Sawtooth Barriers: Influence of the
Effective Mass.

Both barriers are 10 nm wide at the base and are 0.33 eV high. Curve 0 is for GaAs-

Al(0.4)Ga(0.6)As with effective mass variations taken account of, and Curve 1 is for effective mass

uniform and equal to mg. Note the similarity between the two curves, as opposed to the same data

for step barriers.

53. T-E Curves for Sawtooth Single Step Barrlers: Influence of Effective Mass
and Applled Electric Fleld Strength.
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All data is for barriers 10 nm wide at the base and 0.33 eV high. Curve 0: Fap = 0, Meff = Mo.
Curve 2: Fap = 0, GaAs-Al(0.4)Ga(0.6)As Curve 3: Fap = 0.02 eV/nm, Meff = mo. Curve 4: Fap =
0.02 eV/nm, GaAs-Al(0.4)Ga(0.6)As Curve 5: Fap = 0.05 eV/nm, mett = mg.  Curve 6: Fap = 0.05

eV/nm, GaAs-Al(0.4)Ga(0.6)As .

54. Deformation of Single Sawtooth Barrier under Applled Electric Field.
The shape of the barrier under Fap = 0, 0.02, and 0.05 eV/nm is shown in Figures a, b, and c,
respectively. At Fap = 0.05 eV/nm the barrier is actually a staircase.

55. T-E Curve for Two-Barrler Sawtooth Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. Effective mass is uniform and equal to mg.

56. T-E Curves for Two-Barrler Sawtooth Superiattices: Influence of Effective

Mass.
Bases are 4.5 nm wide, heights are 0.5 eV. Figure a is for mest = mg, Figure b is for GaAs-

Al(0.5)Ga(0.5)As superattice.

§7. T-E Curves for Sawtooth and Step Two-Barrier GaAs-Al(0.5)Ga(0.5)As

Superlattices. e e
Curve 0: MSB with barriers 2 wide, 5 nm apart, and 0.5 eV high
Curve 1: Sawtooth superattice with 4.5 nm wide bases.

58. T-E Curves for Sawtooth and Step Flve-Barrler GaAs-Al(0.5)Ga(0.5)As

Superlattices.
Curve 0: Sawtooth superlattice with 4.5 nm wide bases.

Curve 1: MSB with barriers 2 wide, 5 nm apart, and 0.5 eV high

59. J-V Curves for Two-Barrler GaAs-Al{0.5)Ga(0.5)As Sawtooth and Step

Superlattices.
Curve 0: Sawtooth superlattice with 4.5 nm bases, 0.5 eV high
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60. Deformation of Two-Barrier Sawtooth Superlattice under Applied Electric
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61. T-E Curve for Two-Barrier GaAs-Al(0.5)Ga(0.5)As Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. The applied field strength is 0.052 eV/nm (applied
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1. INTRODUCTION

Recently there has been much interest in semiconductor heterojunction superlattices
both theoretically and practically. The theoretical interest lies in the fact that quantum effects are
observable in these macroscopic structures (1-3). The practical interest lies in the application of
these superlattices as novel electronic devices with desirable characteristics (3-8).

The quantum mechanical effects displayed by semiconductor superlattices are
manifestations of both quantum size effects and tunneling (1-11). Quantum confinement of
electrons and holes in structures which are of the same order as the de Broglie wavelength of the
particle results in quantization of the energy eigenvalues where previously a continuum existed.
The degree of quantization depends on the number of dimensions in which the confinement
exists. The motion of the confined particle then has a reduced dimensionality depending on
whether the quantum confinement is present in more than one dimension. For instance,
confinement in one direction results in approximately two-dimensional motion with partial
quantization of energy eigenvalues. If the particle is confined in all three dimensions, the energy
levels can be sharply quantized.(See Figure 1)

Tunneling is the process whereby a quantum particle can cross a potential barrier, which
classically would be completely impenetrable because of its higher energy, to a state of equal or
lower energy. The wave function of the particle exiends into or even through the barrier when the
barrier potential is finite. A non-zero particle current density through the barrier then results from
the tunneling process. Quantum mechanical tunneling has been the basis of many
semiconductor devices, starting with the Esaki tunnel diode, named for its inventor Leo Esaki,
and introduced in 1958 (12). A discussion of the evolution of tunneling theory from 1928 up to
the early seventies has been presented by L. Esaki (3, pp. 47-77).

When a particle interacts with and is confined by two or more barriers of finite height and
not too great thickness, its wave is reflected mulliply oft each potential barrier reached by
tunneling. When the confining region’s dimension is some mufltiple of the wavelength, the particle
"resonates” in the regions where its energy is greater than the local potential. At these
wavelengths the tunneling current is amplified. Actually, both size quantization effects and
resonance result from the same source: the constructive interference of forward and backward
waves. This is the source of the quantized energy levels that result from the confinement of the
particle.

Resonant tunneling figures prominently in the transport of carriers through
semiconductor superlattices, and to understand it is not only desirable theoretically, but is also
central to the application of these structures as electronic devices. Resonant tunneling of
electrons and holes in the conduction and valence bands leads to formation of sub- or mini-
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bands, whose widths and energy levels will affect the operation of superlattice devices. Tunneling
calculations for semiconductor superlattices can provide this informafion, which can then be
implemented in design of improved structures. By finding the transmission coefficient through
the structure as a function of energy for either carrier, one can locate the energy levels of the

resonances. It is also possible to find the effects of an external electric treld on the transmission
coetfrcrent ‘and hence upon the resonanceehergy levels. Much effort has already been directed
to this end for step superlattrces however the sawtooth or graded band- gap supertattrce
proposed by F. Capasso (3) has up until now not been studied theoretrcally, except for an analysrs

of the muttrplrcatron noise assocrated with its use as a photo-detector This is the aim m of the

present study

A resurgence of ‘interest in resonant tunnehng in hetero;unctron semrconductors ‘has
been spurred by recent advances in molecular beam epitaxy, (MBE), which provides abrupt
interfaces (on the order ofa monolayer) as well as very uniform layer thicknesses (4-8,13). MBE is
used to make superlattices of multiple barriers and wells in which the energy levels of the virtual
states are consistent from well to well, leading to miniband formation and therefore to efficient
transport of carriers through the structure. The energy tevels in quantum wells and superlattices
have been most recently and thoroughly reviewed by Attarellr (2) ‘Excellent dis drscussrons of the
devices which can be made from semiconductor superlattices grown by MBE, and the relationship
of the superlattice structure to energy levels and resuttant dev:ce pertormance are gwen by

Capasso et alia (4-8).
The earliest theoretical exploration of resonant tunneling in semiconductor

heterojunction superlattices was published by L. Esaki and R. Tsu in 1970 (9), who predicted
negative conductance, caused by electron transport into negative effective mass regions of the
minizone, and Bloch oscillations. The first experimental observation of resonant tunneling
through a double barrier was made by Chang, Esaki, and Tsu in 1974 (10).

A fairly comprehensive body of work addressing carrier transport through GaAs-AlGaAs
step superlattices exists with which comparisons may be made when studying other kinds of
superlattice, starting with the work of Esaki and Tsu cited above. In a paper published in 1973
(11), they presented the calculated transmission coefficient as a function of incident energy, and
tunneling current as a function of applied voltage, for two, three, and five GaAs-Al(0.5)Ga(0.5)As
step barriers. A transfer matrix method was used for this work. Their computations were for thin
layers (50 and 20 A wells and barriers,respectively), neglecting the potential gradients caused by
the applied field within each layer, but taking account of the total potential drop between
successive periods. They took account of effective mass variations throughout the superlattice.
The correlation of the current peaks in the calculated J-V curves with the resonance energy levels
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in the transmission data indicates a Stark shift in the levels that is linear in the electric field
strength.

More recently, Marsh (14) applied an empirical pseudopotential formulation to tunneling
calculations through a GaAs-Al(x)Ga(1-x)As double heterostructure step barrier under zero
external electric field, and compared the results to those obtained by the effective mass
approximation. In taking account of the effective mass variations throughout the heterostructure,
Marsh made the distinction between an effective mass approximation which uses conventional
wave function connection rules at interfaces where there is a sharp change in effective mass, and
one which uses the modified connection rules suggested by Kroemer and Zhu (15,16). The
latter, about which more will be said below, maintain particle flux continuity through the interface.
Marsh found good agreement between the effective mass approximation and the empirical
pseudopotential when the modified connection rules are used, and the aluminum concentration
in the barrier layer is such that it is still a direct gap material. Significant discrepancies were
observed between the two methods when direct-indirect interfaces were studied, and in all cases
when the unmodified connection rules were used.

A modified scattering matrix formalism was recently applied to calculating the resonance
energy spectra for electrons in multiple GaAs-AlGaAs quantum wells (17). The Stark shift of the
levels was also calculated and found to be linear In the field strength. Although in that work the
effective masses appropriate to each region were used, it appears that the conventional wave-
function connection rules were used in deriving the scattering matrices, which may have resulted
in some error in the computed energy levels.

MBE growth of these structures provides very precise control of the aluminum
concentration in AlGaAs even at the monolayer level, allowing linear and even parabolic grading of
the band-gap. Several novel electronic devices using both linearly and parabolically graded-gap
materials have recently been described in the literature (4-6). A superlattice proposed by Capasso
for use as a low-noise, high-gain solid-state avalanche photodiode is described in (7). In this
structure, the conduction and valence band edges in each stage describe a sawtooth profile, that
is, the band-gap in each layer is approximately linearly graded. (refer to Figure 2) This is achieved
by varying the aluminum content linearly within the layer.At each interface there is a band-gap
mismatch between pure GaAs and Al(x)Ga(1-x)As which is taken up mostly in the alignment of the
conduction bands. Five or six stages are contained between n and p doped GaAs cladding layers.
In operation, photo-electrons are accelerated down the structure by a strong external reverse
bias. At each interface, because of the built-in potential drop afforded by the conduction band
misalignment, the electron acquires enough kinetic energy to impact-ionize a lattice atom and
liberate another electron. In this way the electrons multiply at each stage. The small valence band
discontinuity in AlGaAs prevents the impact ionization of the holes. The larger the conduction



band discontinuity, the higher the probability that each electron will impact-ionize at each stage.
This means that very low-noise multiplication can be achieved, approaching the light- detection

performance of a photomultiplier tube.
The size of the potential mismatch at each interface in this device is determined by the

amount of aluminum in the Al(x)Ga(1 x)As at the end of each s stage “For x greater than
approximately 0.4 (18,19), Al(x)Ga(1-x)As is an indirect gap material; pure » AlAs has an indirect
bandgap, and pure GaAs is a direct-gap material. The problem of electron idnrielmg through a
direct- indirect gap interface must be handled dnﬂerently than the snmpler case of transport
between two direct-gap layers, as the work by Marsh cited above indicates. Physically, the
transport of electrons may be hindered by the competition of the direct and indirect bands in the
high aluminum material. This may partially undo the advantage of the large conduction band
discontinuity associated with high aluminum content. Hence consideration of Al(x)Ga(1-x)As
sawtooth superlattices was limited in this study to compositions with x no greater than 0.4. -
Sawtooth superlattices achieved by cdrﬁpositional grading differ from ste;5 ‘superiattices in

carriers is nowhere constant throughout the structure. In step superlamces the effectlve mass is
constant within each Iayer, but there is a sharp change at each boundary. In sawtooth
superiattices in AlGaAs the effective mass of the electron in the direct band is a quadratic function
of the amount of aluminum. Since the aluminum content is linearly gradgg “there is a quadratic
variation of the effective mass and the band-gap within each Iayer and a large dtscontmuny at the
end of each stage as well (18 19) oo ’

Another significant difference between the step and sawtooth superlattices is the
presence of internal or "quasi® fields associated with the band-gap grading. One of these is a
constant field which is the gradient of the band-gap. This field accelerates electrons and holes in
the direction of the narrowest bandgap, and opposes the reverse bias applied to the device.

dE
Fe= — _£ (13)
dz S
E
] (1b)
dz

Ec(z) and Ev(z) are the conduction and valence band edge energies, respectively. This field is
practically much less than the applied reverse bias for direct-gap AlGaAs-GaAs sawtooth

superiattices.

YECTTTT e e

METTrmmen

s

i



Furthermore, the varying effective mass of the carriers gives rise to another quasi-field
which assists the external reverse bias in accelerating carriers through the structure. This field is

given by:
Fo= d lkTQn(Tﬁfﬁ) (2a)
dz \ 2 m,
Fi,= d (B kT (.Te_fL!‘_) (2b)
dz \ 2 m,

where Mgq(z) and mpex(z) are the electron and hole effective masses, respectively. For electrons
in a direct-gap AlGaAs-GaAs sawtooth, this field strength is much less than that due to the band-
gap gradient, and these two quasi-fields offset one another somewhat.

One more major difference between step and sawtooth superlattices is the way they
deform under high external fields. Figure 3 illustrates this difference.Iln a step superlattice, no
matter how strong the field, the barriers remain such that there is always a well between them.
Resonances can in principal always be formed in these wells even under strong fields. The
sawtooth, on the other hand, becomes a staircase structure at applied voltages greater than the
sum of the conduction band discontinuities over all the stages. Then the triangular wells between
the sawtooth bamiers no longer exist. The electron still interacts with the staircase, but tunneling is
no longer occurring between the barriers. Therefore it is expected that the transition from
sawtooth to staircase should be signalled by some feature in the current-voltage characteristic.

An analysis of tunneling through a graded gap superlattice should thus take account of
not only the external electric field and structural parameters such as number of stages, layer
widths, composition, and interfacial conduction band discontinuities, but also of the quasi-fields
caused by the gradients in the band-gap and effective mass. The differences between step and
sawtooth superlattices should be reflected in the results of tunneling calculations.

It is the central purpose of the work described here to study the resonant energy levels of
graded band gap GaAs-Al(x)Ga(1-x)As superlattices for x less than or equal to 0.4 (i.e. for direct
gap material only), as a function of the applied and quasi-fields discussed above. A transfer matrix
method is used to calculate the transmission coefficient and tunneling current for conduction
electrons in sawtooth superlattices similar to those which might be used as avalanche
photodiodes. Tunneling calculations are also presented for the same kind of step superiattice
investigated by Tsu and Esaki (11). These are shown to agree with those previously obtained,
and are also used to illustrate the differences and similarities between sawtooth and step
superlattices with similar compositions and structural parameters. Throughout this work particular



attention is paid to role of the effective mass In electron transport through these structures. The
justification for using the modified wave function connection rules when effective mass
discontinuities are encountered at interfaces, is discussed. The effects of neglecting effective
mass variations, or using inappropriate connection rules, are also explored. :
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2. THEORY OF TUNNELING IN SUPERLATTICES

2.A. Quantum Mechanical Tunneling

In quantum mechanical tunneling, a particle of energy E is incident on one or more
potential barriers of arbitrary shape and height.lts behavior is described by the Schroedinger
equation; specifically, the wave function inside and outside the barrier, energy eigenvalues and
resonances, the transmission and reflection coefficients, and transmitted and reflected probability
density currents may be calculated. In the problem of tunneling in superlattices, the salient
features are essentially one dimensional: most often the superiattice is formed of paraliel layers
alternating in one dimension, say the z direction. The tunneling barriers then extend in the z
direction, while momenta in the x and y directions are constants of the motion. The one-
dimensional Schroedinger equation is then used to describe the motion of the tunneling particle:

2
2 &Y, vi-E)y -0 (3)
2""eff dz2

where vy is the wave function, V(z) is the potential due to the superlattice, and mes is the mass of
the incident paricle (20,21).

In superlattices formed of real solids, the mass in the expression above is the effective
mass appropriate to each layer. In the effective mass approximation, the ionic potential of the
crystalline lattice is not dealt with directly, but instead is taken account of by the parameters of the

eftective mass and the energy band edge.(22)
The solution to the Schroedinger equation in regions of constant potential where V(z) =
Vij, is the set of plane waves:

{4)

where:
Y 2mest (EV)) (5)
! h
When the energy E is greater than the potential Vj, (E - Vj) > 0 and the general solution
above is composed of plane waves propagating to the right: exp(ik;j z), and to the left: exp(-ik; z).



The particle propagates throughout this region like a free particle. This is characteristic of the

motion of the particle in the regions outside the barriers.
When the particle encounters regions where its energy is lower than the potential, then
(E - Vj) < 0, and the solution to the Schroedinger equation is the sum of exponentially growing

and decaying parts:

(6)

where Xj is:

- i \/?mgff (E - Vj) (7)

This wave function describes the penetration of the particle into a barrier. When the effective
mass Met of the particle is constant from region to region, the coefficients A and B; are found by

applying the standard connection rules of matching the wave functions and first derivatives at
each boundary:
dfi(Z) = wj""l(z) (8a)

yla = Yl (8b)

In semiconductors the effective mass is dependent on composition. In semiconductor
superlattices, the effective mass therefore makes a discontinuous jump at each interface between
dissimilar materials. When this is the case, the standard wave function matching procedure above
will not result in conservation of the probability density current through the interface (15,16,23).
The connection rules must be modified so that this current is conserved. One approach (15,16} to

this is to redefine the wave functions on either side of the interface as:

Mo (9)

Once this is done, the standard practice of matching the wave functions and their first derivatives
can be applied to the x; to obtain the coefficients Aj and Bj. To summarize, the former wave
function v is not continuous at each boundary when the effective mass of the particle changes
abruptly there, but the renormalized wave function x, used with the standard connection rules,
results in coefficients which maintain the continuity of particle flux J through the boundaries:
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(10)

i j+1
* *
—i dy; dy -ih dyx; dx 4
2mo b} dz dz 2mo i+1  dz i+l dz

2.B. Transfer matrix method
2.B.1. General properties of the transfer matrix

Transfer matrices can be derived describing the propagation of a wave through a
superlattice of wells and barriers. The formalism is identical to that used in optics, where ray
matrices are applied to the propagation of light through optical elements. (24)

The transfer matrix M used in the present work is closely related to the scattering matrix S
that is applied to three-dimensional problems of nuclear scattering. The S matrix is most useful for
formulating symmetry properties, whereas the M matrix is best applied to the one-dimensional
problems dealt with here. it has been used in tunneling calculations for semiconductor multiple
step barriers (MSB's), by Esaki and Tsu (11) and C. Schwartz (17), and for electrode-polymer
interfacial layers by Meijer and Van Roggen (25,26).

The wave functions on either side of a potential step at z = 0 are written:

ik.z —ik.z
ll/j= A e } + B.e }

’ i 2 <0 {12a)

ik: 42 —iki, 42
Vier = Ajsr © AN Bj+q © i+ 220 {12b)

There are two linear, homogeneous equations relating the coefficients on either side of the step.
The transfer matrix M expresses these equations:

= (13)

The origin of the Mj; are the matching conditions at the step. M is determined to be:

k. k.

(1 + Ejﬂ) el(kj+1 - kj)l (1 _ k+1) e—i(k]+1 + kl)l
m 1 )

m-l
) 1 . k., .+ k. . —ilk- -
Q k |1) I(k]'1 k’)z (1 k |1> I(k]’1 kj)z

1
M- (14)
2

kj k]

9



Note that mym;, 1 is a factor of unity when there is no effective mass change at the
interface. An overall transfer matrix through an arbitrary number N of steps, is just the product of
the N such matrices found by matching at each step:

{(15)

=
- I
] ]
=

Some general statements may be made about the properties of M, without knowing the
details of its form, as long as the potential to which it is applied is real, goes to zero at infinity, and is

lform electnc tleld is present, 7nor when there

that the Iatter two condttions do not appty when a
is an asymmetric effective mass gradient throughout the structure, as is the case for the sawtooth
superlattice. In that case, and in the case of the MSB under a uniform electric field, tunneling
calculations are complicated somewhat by this lack of symmetry. '

The scattering matrix S for a one-dimensional potential is:

B, s s A
( ]>=( 11 12)( l) 7 (16)
Ajr S21 S22/ \Bjn

This matrix relates the magmtudes of the outgomg waves to those of the tncomlng ones, and is
easuly related to the M matrix when the probablhty current densnty is conserved. In that case, S can
be shown to be unitary, and symmetric as a consequence of the time reversibility of the

Schroedinger equation for a real potential. M is then related to S as:

a1 n
S12 512
M = (17)
$11
$12 "12

When the potential is even, the Schroedinger equation is invariant under space
reflection. Then S11 = Spo and Sy2 = Spy. This fact combined with the unitarity and symmetry of S,

leads to the relationships between the Mjj:
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det (M) =1

To summarize, the expressions above apply to transfer matrices for real, even, potentials which go
to zero at infinity, and for which the probability current density is conserved.

Making the assumption that there is no wave incident on the barrier from the right implies
that Bj,1 = 0. Then the transmission coefficient T, defined as the magnitude squared of the ratio
of the transmitted to the incident wave amplitudes A;,.1/A;, is:

A2 -2

T= |4 = [My] (18)
A 11
!

When Mqq = 1, then the barrier is effectively transparent to the incident particle, and
transmission is at a maximum of 1. This phenomenon is known as resonance. When My is very
large, the barrier is effectively opaque, and most of the incident energy is reflected. Thus the
transmission coefficient is related to the total transfer matrix M via the element M.

The transfer matrix is also used to caiculate the ratio of the transmitted to the incident
current densities. Applying equation 11 for the probability current density, to the incident and
transmitted components of the wave functions Ai and At on either side of the interface, gives the
incident and transmitted current densities:

bk
J o= —i|a)? (19a)
i m, i

hk
= :1| At|2 {19b)

t
The ratio of the transmitted to incident current density is then:

k
J = (_t) (ﬁ)wm -2 (20)
ki m;

J is often referred to as the tunneling current. It is the actual property of physical interest in
tunneling problems, and is proportional to the transmission coefficient. Thus the element M4 of
the total transfer matrix determines the tunneling current through semiconductor superlattices.

The presence of the effective mass should be noted in the expression above for the
tunneling current: the ratio of the effective masses in the initial and final media will affect the
current. Tunneling from high to low effective mass is less probable than tunneling in the opposite
direction, for instance. This is anticipated in equation 2 for the quasi-field caused by effective
mass variations:

11



My

V= —g-kTQn (—meff(Z))

The potential difference between the initial and final media due to the effective mass gradient is

given by: = L L

Ny =-‘;'—kTQn(—Ti) o (21)

Inspection of the equation above shows that electrons will be accelerated toward the medium with

the higher effective mass.
2.B.2. Tunneling: Single Step Barrier

The single step barrier is the building block for the most common kind of superlattice, the
mumple step barrier (MSB) often referred to in the literature as the multiple quantum well (MQW).

In the absence of an electnc f:eld the potentlal is constant inside and outside the barrier, and
S|mple analytical expressions are obtamable for the transmission coefficient. Even when there is
an effective mass difference between the barrier and its surroundings, this only adds a small
constant term to the potential in each reglon and analytical expressions for T are still easily found.
To illustrate the use of the transfer matrix in tunneling problems, the transmission coefficient is
found below for the step barrier. This will provide a basis for comparison of tunneling through
single and multiple barriers. (See Figure 5)

The total transfer matrix through the barrier is the product of the transfer matrices at each

step:
where M is evaluated at z = zy and is:
(1 N _::_2) ei(kz - k.l)z.' (1 _ _IiZ) e—i(kz +thylzg\ -
k
m, =1 [T 1 1 (23)
2 m
2 ki\ ilk, +kqlz k itky — kq)
PR 1 DB L 14 -2 27 1A
k1 kq

and:
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1R k2 h
M2 is evaluated at z = zp:
(1 + '—':l)e’(k1 - kz)zz (1 _ :i—l ) e—l(k1 + kz)lz
M, = 12- I2 2 2 (24)
mq | _ kq ei(k1 +kylzy - kq e—i(k1 - kylz,
ky ko

2.B.2.a. Single Step Barrier: E » Vg

Consider first the case where the incident energy E is greater than the barrier height, E >
Vo. (Refer to Figure 5a) In this case k1 and k2 are both real and when My and M2 are multiplied, the
matrix element M1 is:

1 ikqa k2 + K2
M =— @ 1 4coszk a —2i (_1_2) sin2k a (25)
1 2 2
4 k1k2

where a is equal to the barrier width (z2-z1), and [M1] is, after a little rearrangement:

2 2 2\2 . 2
4k1k2 + (k1 - k2) sin k2a

Myq = (26)
1 2 2
4k] k3
The transmission coefficient T is thus 1/|M11] or:
K2 - k3 sin?kya -
T = |1+ (27)
ak3 k3

Inspection shows that T is at its maximum of 1 whenever sin(kpa) is zero, or when koa = nx. This is
resonance, in which standing waves exist in the region of the barrier. At resonance, an incident
wave packet spends a comparatively long time in the vicinity of the barrier, even though its energy
is greater than the barrier height.

T can be expressed explicitly as a function of incident energy E if the definitions of the
wavevectors k1 and kp are used in the expression above. At this point the effective masses

should be retained in the expressions for the two wavevectors: if the effective masses are

13



ditferent inside and outside the barrier, T(E) will differ from the standard expression which
assumes that the mass is everywhere constant. The expression for T(E) which takes account of

the effective mass variations is:

T =

(1 . (E(m1 - m2) +moV, )2 sin2 (%. /2m2 (E - Vo) ) )_1 (28)

4mm, E(E-V,)

Note that when the effective mass is equal throughout, this expression for T(E) becomes

the standard formula:

2,22 ) a4 e
T - 1+ Vo Sin T 2m2 (E - VO) (29)
4E (E - Vo)

The difference between these two equations is worth noting. A term involving the
incident energy and the difference between the two effective masses survives in the
denominator of the first equation. This term changes the minimum values of the transmission
coefficient relative to those in the constant mass case: the relative magnitudes of my and my
determine whether the minima are raised or lowered. It is also evident that the oscillatory term in
the denominator is a function of the effective mass inside the barrier, ma.

In the constant effective mass expression, the energies at which the transmission
coefficient is maximized are easily obtained by setting the argument of the sine equal to nx:

2
E = — (“T‘“) +V, (30)
2mgt

Inspection shows that the first maximum in T occurs for E greater than the barrier height by
hr/2ma. Successive maxima are scaled as n2. However, when the masses inside and outside the
barrier are different, the location of the transmission maxima are obtained by minimizing the
denominator in equation 29. These maxima or resonance peaks will generally not occur at the
same energies as in the constant-mass case. Effective mass variations therefore can significantly
affect the transmission coefficient for single step barriers even when the incident energy is well

above the barrier height.
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2.B.2.b. Single Step Barrier: E < Vp

Tunneling may occur when the incident energy E is less than the barrier height V. (Refer
to Figure 6b) In this case the wavevector ko Is imaginary, and equai to:

kg = i T =

Substituting ix for ka2 in equation 28, and using the definitions of k{ and x results in the

expression for the tunneling transmission coefficient through the barrier:

4m,m, E(Vo —E)

;. (1 . (E(m1 - m2) +myV, )2 sin h2 ('»:T 2m2(V0 - E))) a1

Just as in the preceding case where E > Vo, the effective masses inside and outside the
barrier have been retained. If the effective mass is constant, then the familiar expression for T(E) is

retrieved:

2 ..2{4 -1
V2 sinh? (3 /2m ¢ (V_—E)
T = (1+ o ™ (f‘ Meft "o )) (32)

4E (v, — E)

Again, both the absolute values and the relative differences between the effective
masses affect the transmission coefficient. In both expressions, T increases monotonically from
zero, for incident energy of zero, to its maximum value (for energies less than the barrier height)
when E = Vg. However, the rate at which T increases is a function of my and mp. The maximum
value can be found by taking the limit in equation 32 as (E - V) approaches zero:

2, \-1
T = (1+ _T1_°__V°_) (33)
2h2

15



It is interesting that the maximum value of T in the limit as E approaches Vy, is a function of the

effective mass outside the barrier, and not the mass inside the barrier.

2.B.2.c. Single Step Barrier: Lim E-Vp

It is worth examining what happens when the particle energy coincides exactly with the
discontinuity in the transmission coefficient, since it is a frequent occurrence when an arbitrary
potential is broken down into many small potential steps. This is the classical "turning point" of a
particle in a potential. It is most easily treated by going back to the Schroedinger equation, and
immediately using the fact that E = V. What results is the Laplace equation over the region of the

barrier:
2
d"y - 0<z<a (34)
dz2

The solutions to the Schroedinger equation outside the barrier are still the plane wave solutions
described above. The wave functions inside and outside the barrier are then;

ik,2z —iksz
w - Ae 1 + Be 1 z <0 (353)
Yy = C+ Dz 0<z< a (35b)
ik1z —ik1z
Yy = Fe + Ge z 2 a {35¢)

The transfer matrix through the barrier is still given by:

A F
= M1 . M2 [ (36)
8 G

where matching the wave functions and their first derivatives at z = 0 and z = a gives the matrices
My and Ma:

(37

and:
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ik —ik
(-ikgzple 12 (1+ikgze 12
M, = L fﬂl (38)
2 m . .
1 kqz —ik,2
ik 12 —ikje 12 2) = a
From the product M1 Mo, the overall transfer matrix element M4 is:
1 ik —ik
Mg = ((1—ik1a)e' 1° e ‘a) (39)
The transmission coefficient is [M11]2 or:
2 \—1 2\ -1
7 o= (1. ME® = (1. MY (40)
2h? 2h?

This is the same result obtained above, in the case where E < Vg, by taking the limitof Tas E
approaches Vp. There is no discontinuity in T when the incident energy happens to coincide with

barrier height, and this applies as well when the barrier consists of many small steps of constant
potential, V;.

2.B.2.d. Tunneling Current Through Single Step Barrler

The tunneling current is easily found from the transmission coefficient whether the
incident energy is above or below the barrier height. Recalling that the tunneling current is given

by:
LY A
ki m;

it is apparent that since the effective masses are the same on either side of the barrier, then so are
the initial and final wavevectors. J is then just equal to the transmission coefficient. In a step barrier
surrounded by media with different effective masses, the tunneling current would not take such a
simple form, but would reflect the effects of the quasi-field caused by the net effective mass
gradient.

2.B.3. Multiple Step Barriers

17



Just as' thie transmission coefficient through a single step barriér isiééléulated, one can
perform the samercaflcﬁlétion for an array of step barriers or supéfrlianiig:g.r Tunneling through an
array of step bariers is significantly different than for a single barrier. The most striking difference is
that resonances are possible for energies below the barrier height, whereas the transmission
coefficient through a single barrier can only have resonances when the incident energy is at least
equal to the barrier height. If the MSB is symmetric with respect to the origin, the transmission
coefficient at the resonances is equal to 1, as will be shown below, by using some of the general
properties of the transfer matrix outlined in section 2.B.1.

The goal of tunneling calculations for MSB's is often to find the resonances and their
Stark shift. It is possible to Sol\)e directly for the resonances when the MSB is not deformed by an
external field, i.e., when there is even symmetry. When the symm'etfryjis broken by a uniform field,
and the Stark shift of the resonances and tunneling current density are desired, then a numerical
solution by means of transfer matrices is useful. That problem Will bé'déa'lt' with in section 2.B.6;
the solution for the zero-field case is given below for an MSB of N step barriers.

A typical MSB is shown in Figure 8. A total transfer matrix M for the MSB can be expressed
as the matrix My, for a single barrier of width a, multiplied by a phase factor accounting for transfer
over the distance w between neighboring barriers, raised to the Nth power where N is the number
of periods in the MSB:

ol Ko W 0 N
My = (M ( _ikow) (41)
0 e
or:
e'kow 0 N
N
M, = M (42)
t b —ikow
0 e

Sylvester's theorem (27) gives the Nth product of a square matrix as:

n 1 (M, =X 1)
tmy) = N = Y g0y Ek— (43)
K=1 I Oy = A
izk
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where A; and Ay are distinct eigenvalues of My. Representing My, as:

A c
M, = (44)
D B

the eigenvalues are:

where:

2
/A—B
u = \A+B) (46a) V = A —B)7 . ) +CD (46b)
2

The element (MpN),, is then, by Sylvester's theorem:

N N, N
b ' VY
27"
and the off-diagonal element (MpN),, is:
N N
(N - »
N, = C (48)
b 12 )\1_)‘2

One can simplify these expressions by expanding xN1.2 in binomial series and separating

the even and odd powers into two series:

[N+1]
(N/2] N 2 N 1202
Ng = N = > ( )uN_zq viazv 3 )u”“zq v2a-2  (49)
q=0 2q q=1 2q-1
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These expansions can be used in solving for the resonances of the MSB. It is more convenient to
use the simpler expression for the off-diagonal element, instead of (MpN)45.
Recall that the origin of the criterion for resonance is in the boundary condition on the

wave:

>
i
=
=

AIast

)
"
<)
=
2
I
o

j t21 t22 Blast

At resonance the coefficient b is zero because there is no reflected wave. This implies not only
that (My),, is 1, but also that (M), and by symmetry, (My),, are zero. Then using equation 48
above for (MpN),, gives the resonance condition for the MSB in terms of the off-diagonal element:

ikon 0
-]
N
=0 = (M") . (50)
t b —ik . Nw
12 12 0 e O
Hence:
N N
A = A
N _ 1 2
A=A
Using the series expansions of equation 49 for A1N and AoN gives the resonance condition:
N2+1 N
Ny, = C > ( )"N_zq” v2a-2 (52)
q=1 2q-1

The actual values of u and v are determined by the incident energy and the structure of the MSB.
As an example, consider the solution for the resonances of a three period MSB such as
shown in Figure 9. The expression for (MpN),, is:

3
M
o,

3
3

- c wd-2ay2a-2 - o (53)
a=1 2q-1
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and the resonances are found by solving:
3 - 2,v2) =
|(Mb )12‘ C(3uc+V4) =0 (54)

The fact that the determinant of My, is equal to 1 can be used to put v in terms of u. Using a general
expression for Mp, gives:

A C
det (M) = = (AB - CD) = 1 (55)
Recalling that:
2
u = (A_+Bl V = ‘A — B + CD
2 2

then:
(A+B)?2  (A-B)?
- +CD = (AB—CD) = 1
4 4
or.
u2-v2 =1 (56)

so that:

I(Mb3)12 I =clau? - 1 =0 (57)

= l
u== (2) (58)

In other words, there are two resonances given by u = 1/2 and u = -1/2. These are
symmetrically spaced with respect to a single resonance in a single well between two such
barriers. That single level is split by the coupling between wells.

This method can be applied whenever the MSB is symmetric with respect to the origin.
The solution for the resonances, their Stark shift, and the tunneling current when the MSB is
distorted by a uniform field is treated in a subsequent section.
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2.B.4. SIngrlgjtep potential wells: zero exte;nal f!eld

It is apparent that the transfer matrix method épplies equally well to problems involving
potential wells. Pdt;ﬁ{i;ir;wells are taken iﬁ tfns s:tudytobe étn'ctly below poténtiailr zerb, or ground
level,and a distinction is made between them and the kind of well which is formed between two
pdtential step barriers.(See Figure 10) in the present work the term;"au'éhtum well" and "multiple
quantum well" (MQW) refer to structures below ground level. ThIS iJrse is adopted to avoid
contusion,since the coiﬁbutation of bound states in a single finite well is different from that of the
resonances formed between two finite step barriers. The use of the transfer matrix in finding the
bound states of a particle in a quantum well, and the transmission coefficient of a paricle
overflying the well, is outlined below, for zero extemal field.

2.B.4.a. Single Quantum Well: E > 0 (Overflying the Well)

The treatment of a particle overflying a square potential well is very similar to the method
already outlined for a step barrier. (Refer to Figure 11a) Given a well of width a, and depth -Vg,

transfer matrices are found at each of its edges, and mutltiplied to find the overall transfer matrix M.
The sole difference is that the wavevector in the region of the well, ko, becomes:

22 (£ * Vo) (59)

ky = T

The wavevector ky outside the well is the same as for the step barrier. The transmission
coefficient can be found by substituting ko above into the expression derived for the step barrier
(equation 27). if the effective masses my and my inside and outside the well are retained, T is

then:

(60)

T - (1 . (E(m1—mJ)—mon)2 siHZ(%.IZmZ(E+VO)) )_1

The only difference between this and equation 28 is in the algebraic sign of Vg. When the

effective mass is constant everywhere, T becomes:

2 .2(a / -1
T = (1 + meﬂvo sin (h 2me" (E+V°)))

4E (E+ V)

{61)
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This is also identical to equation 29 except for the sign of Vg. For ‘a particle overflying a well, the
transmission coefficient oscillates between a maximum of one and some minimum value, just as in
the case of a particle overflying a potential barrier. Using equation 61 above with the fact that
maxima occur when the argument of the sine is equal to nx, gives the maxima in T(E):

~ #2n2 2

E A (62)

[+)

2
2mggga

The physical difference between overflying a well and a barrier, is that the particle travels faster
over the well than in the surrounding regions, and more slowly over the barrier.

2.B.4.b. Single Quantum Well: Vg < E < 0 (Bound States)

For a particle whose energy is between ground level and the bottom of the well, there is
no transmission. The wave function decays exponentially into the surrounding media on both
sides of the well, causing the energy of the particle inside the well to become quantized. The
particle is said to be bound, and the eigenfunctions are bound states. (Refer to Figure 11b)

To find the bound state energy eigenvalues, the {otal transfer matrix is set up as for the
particle overflying the well, only now the wavevectors outside and inside the well become:

~ a/2m, (-E)

ky = ——— (63a) ky =

Vam, v, - €] (63b)
h

It is convenient to set i k1 equal to k. The total transfer matrix is then:

ka 2=k
e K sin k2a +2 cos k2a M12
- 2
Muell (64)
Ma4 My2

The eigenvalue condition follows from the constraint that the wave function be bounded on both

sides of the well, and is that:

23



Mg = O (65)

Thus the bound states inside the well are found by solving the equation: .

eka 2 sinkpa + 2coskpa) _ g (66)
k, k :
2

This is a transcendental equation which can be solved semigraphically or by other numerical
methods. B

It is now apparent why the quantum well is much different than a well formed by a couple
of step barriers. Transmission can always occur for any particle with energy below the barrier
height in the latter case, provided the barriers are not extremely thick, so that there are no bound
states for such a structure. At resonance the particle is equally likely to be found anywhere inside
the well or out of it, and off resonance, the particle is reflected from the barriers to an extent given
by the reflection coefficient R=(1 - T). No eigenvalue condition exists such as for the quantum

well, since any energy is actually allowed to the particle.
2.B.5. Arbitrary potentlals

Up to this point, constant step potentials have been considered. The transfer matrix
method can be applied to potentials of arbitrary spatial variation, however. The formalism of the
transfer matrix requires only that the potential V(z) be a real function of z. If the potential happens
to be symmetric then the transfer matrix has some convenient symmetries, but a lack of symmetry
does not hinder the general approach. In fact, even for asymmetric barriers the transmission and
reflection coefficients are the same whether the particle approaches the barrier from the right or
from the left (21).

In practice, when the potential V(z) is some arbitrary function of z, real but not even
necessarily continuous, it can be approximated by steps which are piecewise constant, in the
same manner as for numerical integration of a curve (Refer to Figure 12). Then the solutions to the
Schroedinger equation in each interval are the simple plane waves. The functional forms of V(z)
and the effective mass, mejt(2), are needed so that the wavevectors 1o the right and left of each
step can be calculated. Then the transfer matrix at each step is calculated from equation 14, and
the overall transfer matrix is found for the structure by multiplication, as in equation 15.

This method has already been used by Meijer and Van Roggen to calculate J-V curves for
polymeric electronic devices (25,26). In such devices the electrode-polymer interfacial barriers
and the applied electric field result in potentials which depart considerably from the simple
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textbook step potentials discussed so far. The overall transfer matrices calculated for these
structures yielded J-V characteristics in agreement with those which were experimentally
observed.

2.B.6. Fleld effects: Constant Electric Fieid

A very important special case of an arbitrary potential is that due to a one-dimensional
constant field. Such a potential is linear in the spatial coordinate:

Vi2) = CFuz + Vg (67)

where F is the field strength, Vg is a constant potential offset, and ¢ is a constant, which equals the
electronic charge when F is the electric field strength. This potential also describes a constant
gravitational field, where F is the acceleration due to gravity, g, and ¢ is the mass of a particle in the
field. (28-30)

Figure 13 shows a single quantum well and step barrier under a uniform electric field.
Under such an electric field, the Schroedinger equation becomes:

“h? 4y
—— — (Vg+CF 2y = EY (68)
2megs d22

The solutions of this equation yield the bound states of a quantum well, and the transmission
coefficient for a step barrier or series of barriers in the presence of a constant field. The simple
analytical solutions obtained in the preceding sections for zero field are no longer valid. The
transfer matrix method can still be used, but the approach adopted depends on the geometry of
the problem: a distinction must be made between a constant field of infinite extent and one which
is "chopped" or restricted to a certain region. In the latter case, the transfer matrix method can be
applied in a straightforward manner. In the former case, the transfer matrix method must be
modified. The results depend as well on which set of boundary conditions are chosen.

The calculation of the Stark shift of the bound states in a single quantum well is described
below. This example is chosen in order to illustrate the consequences of the form assumed by the
applied field, whether it is uniform or localized. First, the solution for the unrestricted uniform field
is outlined, assuming a uniform effective mass. Then it is explained how the solution must be
modified when there is an effective mass jump at the well edges. Finally, the solution for a
localized electric field is outlined.
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2.B.6.a. Single Quantum Well in Unrestricted Uniform Electric Fleld

2.B.6.a.l. Constant Effective Mass mg¢ = Mg

Let us first consider the fate of bound states of a single well in a yhjform electric field.

(Refer to Figure 14) Recall that the bound states of a finite potential well are easily found by

' sen;nbthe element My4 of the total tr;nﬁsfie;ﬁauix to zero. This us ;ﬁeiéiiégm)élue condition that
follows from the requirement that the wave function be bounded on both sides of the well for
energies below the top of the well. In that case the particle is localized in the well. Under a uniform
electric field, however, true bound states no'longer exist, because there is now the possibi!ity that
the particle can lower its energy by tunneling through the side of the well. There will still be
energlies, however, where the residence time of the particle in the well is long. These are close to
the zero-field bound state energies, but are shifted by the field. The goal of this caiculation is to
find the quasi-bound states and their functional dependence on the applied field.

The criterion for quasi-bound states is not that the wave function must be bounded on
either side of the well, but that its amplitude be maximized in the region of the weil. The wave
function on the downstream side of the well is composed of an incoming and outgoing part: quasi-
bound states exist when the ratio of the incoming to the outgoing parts is maximized.

Refer to Figure 14 for the geomeiry of the well in an electric field. The Schroedinger

equation in the regions in and around the well is:

2
—h% ﬂ —eF 2V = EY lz] > a (69a)
2mggt g2

2 2
—hs dcy _ ‘Vo+CFapzNj = Ey Iz} < a {69b)
2mggs g2

Inside the well, the slanted potential can still be broken up into intervals of constant potential
where the wave function is the sum of forward- and backward-propagating plane waves:

ikiz —ikiz
\bi = Aie + Bie

The wave-vector in each interval, k;, is easily calculated knowing the field and the coordinate at the

edge of the interval:

k; T
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The transfer matrix accumulated between the first and last intervals relates the coefficients of the

B\ P
= My My o My... M (71)
c Q

This matrix can now be used to relate the wave functions on either side of the well.
Outside the well, where |z| > a, because the field is uniform, the Schroedinger equation is

wave functions:

most easily solved by a transformation of coordinate. A new coordinate, x, is defined which is a
dimensionless length minus a dimensionless energy, or:

1/3
. = (Zmeff e FaE ) / .+ 2meffE 72)
2 2/3
h (2mgg e F oo h)
Inserting (-x) into equation 69a results in the Airy equation (31):
2
d
l’; - xy =0 (73)
d x
This has the general solution:
¥ = C Ai(—x) + D Bi (—x) (74)

Figures 15 and 16 show the functions Ai(-x) and Bi(-x). Inspection of equation 73 for x shows that
it is very large at small values of the field F. When this is the case, asymptotic forms of the Airy
functions can be used (32):

-' (e ]
Ailx) = —q~ 12,18 ¢ Z (-nk Ck i’_k largz | < H (75a)
Bi (x) = n—12 ,—1/4 ¢ 2 Cki’_k farg z | <% (75b)
0
where:
¢ =223 (76)
3
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The requirement of a bounded wave function on the left side of the well means the wave function

there consists of Ai(-x) alone: .

y— = aAi{—x) (77)

On the right hand side of the well, the wave function is composed of both Ai(-x) and Bi(-x):

Wt = EAil=x) + FBi(-x)

Referring again 1o Figures 15 and 16, shows that the component to be maximized to the
right of the well for a quasi-bound state is Bi(-x). If Bi(-x) is maximized at the expense of Ai(-x), the
amplitude of the wave function is peaked near the well. The problem of finding the quasi-bound
states is a matter of searching for the values of the energy E at a given field strength which

maximize the ratio F/E.
The ratio of the leftmost wave function to its derivative, at z = -a, gives the value of the

wave vector there, kg:

° Ai'(~x)|z=~—a
The transfer matrix Mg can now be initialized atz = - a:

(1 . 51> kg —kga (1 _ '_‘l) o—i (kg + kol

k k
-1 ° ° (79)
o 2 . .

(1 _ _k_1) Jlkq tkgla (1 . k_1) J (kq —kola

ko 0

Now, matching the wave function and its derivative in the last interval of the well to that on
the right at z = a allows the ratio of the incoming and outgoing waves, F/E, to be obtained in terms
of the applied field:

ke {80a)

Pelk®+ Qe E Ai{—x) + FBi{—x)
z=a

(80b)
z=a

. . 1/3
K —ik 2 F
P, kfe' o Q; kee B —( me:ze a) EAi{—x) + FBi(—x)
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Solving for the ratio F/E between the two equations above gives:

1 [l( P, ikga _ ikfe—ikfa) N (_ﬁ eikfa +e—ik,a)]
FIE = AV ""z) r\ Q@ ' /o ' . .
Bi (_xz) ( ik¢a —I kfa) : Bi (—XZ) 1 _£e| kea ik e—lkfa
AT (—xp) A= xz) Ail—xp) A/ (—xpl7\ @
where:

1/3
y = 2 Mg © Fa )
?‘2
P/Q is determined by the total transfer matrix T, the coefficient of the leftmost wave function, A,

and the wavevector at the left edge of the well, kq:

2ik,a — ikqyk
Tip+Type 1 (1 °)
Y +ikqkg (82)

P
o 2ik.a /7 — ikk
1 i o
T+t Ty e (—— )

|k1 ko

=2
+

The expression above can be put in terms of these parameters by matching at z = -a. The wave

vector just to the right of the left edge of the well is:

k; =\/2meff(E+Vo_|Fapea“ (83)
h

and the wave vector just to the left of the right edge, at z = a, is:

\/2 Megs (E+Vy + IFap eal) (84)

kg =
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Inserting k; and k¢ into equation 81 and utilizing equation 78 for kg in the expression for P/Q
(equation 82), will resutt in an expression for F/E explicitly in terms of the appred field Fap, incident
energy E, well geometry, and total transfer matrix T.

It is straightforward to write a computer program to calculate F/E from in equation 81. The
ratio F/E can be plotted as a function of the energy for varying field strengths, and the quasi-
bound state energy levels appear as the maxima in this ratio.

2.B.6.a.ll. Non-Constant Effective Mass: Jump In mg¢s at the Well Edges

in quantum wells formed of semiconductor heterojunctions, the effectnve mass can
change sharply at the edges of the well. When this happens, the modified connection rules must
be used when matching the plane wave; to the Airy functions at i'h;;vérllﬁédges. If the effective
masses inside and outside the well (mz and my, respectively) are retained a new expression for
P/Q results which differs from the one given in equation 82 only by a factor of (ma/m4)1/2:

2ikqaf Y~ ikq kg
P my [ Tiz* T2 e Y +iky kg
- === - - (85)
a mq 2ikqafy—i kqy k
Ti1 * Tppe —
Y + ik1 ko
F/E is now found by inserting equation 85 into equation 81:
[o(-/Z e ,,) ([ 5 o)
FIE = A|( —x5)| v Q my Q 86)

Bi'(— ka  —ika\  Bi(— ik ik
(—x,) ( p ke, ke {‘ xg! 1 (__ T2 B e fa)
Ai'l—x,) Au(—le T AN (—xp) Ai'{—xp) 7 my O

it should be noted that the effective mass difference also makes its presence known in
the values of kg, ki, and ki. An effective mass jump at the edges of the well affects the number and
energies of the calculated bound states in the well.

2.B.6.b. Single Quantum Well: Localized Electric Fleld
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Figure 17 shows a single quantum well in a localized electric field. The field results in a
linear potential restricted to the areas inside and just on either side of the well. Qutside this region,
the field is zero and the potential is constant. This configuration rep?esents real physical situations
better than the unrestricted uniform field picture: in real semiconductor quantum wells and
superiattices, the structure is biased by means of cladding layers in ohmic contact with metals at
constant potential. Outside the cladding, the field is ideally zero.

This is physically a different situation from the unrestricted uniform field case. There, as
pointed out, no true bound states exist. When the field Is localized around the well, however,
bound and quasi-bound states may exist simultaneously. Whether or not they exist depends on
the geometry of the well, the extent of the applied field, and the field strength. Figure 18 shows
how either bound or quasi-bound states, or both, may arise. An obvious condition on the applied
field, if true bound states are to exist, is that:

\"J
F < —f (87)

Field strengths higher than this allow only quasi-bound states. '

The bound and quasi-bound states of the well, and their Stark shift, are easily found by
means of transfer matrices. Here the environs of the well are surrounded by constant potential
regions. The slanted regions around the well are broken into intervals (see Figure 19) over which,
once again, the solutions to the Schroedinger equation are the plane waves. Then, as outlined in
section 2.B.5, for arbitrary potentials, the overall transfer matrix is found by multiplication. The
criterion for a bound state is that M1 be zero. For a quasi-bound state, M11 need only be
minimized. To calculate the Stark shift of a level, M4 is calculated as a function of the applied field:

the shift of the minimum under the field is the Stark shift of the level in question.
2.B.6.c. Multiple Step Barriers: Constant, Locallzed Electric Fleld

A solution for the transmission resonances of an MSB with N barriers, under zero external
field, was outlined in a previous section. The solution was straightforward mainly because of the
simple form of the zero-field Hamiltonian, and because of the right-left symmetry of the MSB.
When a constant electric field is applied, that solution is no longer valid. The transfer matrix
method is easily applied to calculating the Stark shift of the MSB's resonances, and hence the
tunneling current-voltage curve, when a constant, localized electric field is applied. Figure 20
shows an N-barrier MSB, of overall length I, and barrier height Vg, under an applied field Fap - The
barfier widths are a, and the well widths, w. In each barrier and well region, the Schroedinger
equation is given by:
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2 42
:l_ d_w + (V. —eF_z} ¢ = Ey (barrier) (88)
Zmb dzz o ap o )

2
—h? a2y - eFapzd/ =Ey (well) (89)

2mw dzZ

Outside the MSB, the applied field is zero. The barrier and well regions of the I'h period are
broken up into np and Ny, intervals of constant potential, respectively. Within each interval, just as
for the isolated well, the solutions to the Schroedinger equation are the backward- and forward-

propagating plane waves:

ik, . z —ik, : z
= Libw 1,i,b,w
Viibw = PAlibw © + Byibw © (90)

The potential drops at the steps are all the same size because the field is constant inside the
MSB: ,

eF_.a eF_w
av, = 8B {91a) AV, = 3B ;
b " b o {(91b)
b W

The transfer matrix at each step in the I'' barrier or well is:

+ e - + o+ -
(1 + pw \)e'(" bw— Kbw) 21ibw (1 _ Kpw ) e"(k bw* Kow) Z1ibw
=

1 k;,w bw
M . =
Libw = 2 + + + +
( _ kb,w)e+i(k bw" Kbw) Z1ibw (1 + Kow ) o kbwt Ko w) 2ibw
kT kg
b b,w
o {92)
where:

V2mg o, E-VizZ e W) J2my L E—Viz L) AY,
- b lib + bw 1,i,b, b,
Kow ™ Kibw © T b (93a) i, = Kiipw - Jbw w  (93b)

and my, and my, are the effective masses in the barriers.and wells There are (np,w - 1) of these

matrices in each region.
Transmission through the large steps at the right and left edges of the barriers is also

handled by transfer matrices. The matrix through the left edge of the 1th parrier is:
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1 [m kL1 kL
ML= 5 . .
+ ot - + —ifky  + kT )\ 2
_ kL')e+|(kL’|+kL'|) 7 | (1 L ki )e (e, L) 2L,
k'Ll kL1
where:
z = (=1 a+w)
and:
k+ =J2mb E- (VL.| +V°) (963) k= = V 2r“w (E - VLJ)
L1 + L, +
with:
VL,I = e Fap (1-1)(a+w)

The transfer matrix through the right edge of the 1th barrier is:

+ o+ - + ot -
(1 . "L,l) e'(“L,l — k)2 (1 ke, )e"("L,l‘”"LJ)ZL,l

+ gt - + o -
(1 + XR |) Jkp - KR) R, (1 _ kry ) iRy — KRy 7,1

kg KR
1 [m R,! Rl
- — __E ’ ’
A Mw + + + +
(1 _*Ra ) (kR KR Ry (1 + KRy ) kR * KRy 2R
kR.1 KR,I
where:
ZR | = | (a + W) - W
and:
s A2m, ([E-(vg +V,) — _\am, (E-Vg)
kpi = w . ) (100a) kR.| T
with:

VRI = eFap“ (a+w)—w)

’
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The overall transfer matrix is found, as usual, by multiplication. Then the transmission
coefficient can be obtained as a function of both energy and applied field. This gives the Stark
shift of the resonances.

Tunneling current-voltage curves are obtained using equation 20:

k, {m
IV, E) = k—t (m—‘) TV, E)
1 {

where Vap = —€ Fap |, and E is treated as a parameter. In computing the J-V curve for an AlGaAs

MSB, E can be taken as the Fermi energy in the n-cladding layer, typically a few thousandths of an
eV. The effective masses my and m;, are those of the n- and p-cladding layers. The wavevectors in

these regions are k; and kj from above:

. E V2 E-V_)
k; = 2";: (102a) Kk = L(L__aa (102b)

It is easy to write a computer program which varies Fap (or Vap), and for a given MSB
geometry, calculates the J-V curve. Comparison of the J-V curve with the T-E plots showing the
Stark shift of the resonances, clarifies the role that resonant tunneling plays in conduction
through these structures. This is discussed in detail in a subsequent section.

~ In AiGaAs MSB's, where the effective mass varies between the wells and barriers, the
prefactors of the transfer matrices at barrier edges cancel when the matrices are muttiplied. The
effective mass difference does survive, however, in the wavevectors, and should not be
negieéted . The effective masses 'i'nrbr’oth'cladding layers may differ as Wéll, and their ratio oceurs in
equation 20, which gives the tunneling current. The magnitude of the tunneling current, the
location of the resonances, and hence the shape of the J-V curve, are all affected strongly by the
effective masses used throughout, and care should be taken to use the appropriate values.

2.B.6.d. Sawtooth Barrlers: Zero and Non-Zero External Electric Field

Tunneling calculations for sawtooth barriers of the kind shown in Figure 21, under zero

external field, require solution of a Schroedinger equation for the which the Hamiltonian is:

S _ P
H= —+ eFeffz (103)
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where:

e Foep = (V,/b) (104)

is the slope of the barrier. This is effectively the same as the Hamiltonian for a step barrier or well
under a constant, external electric field. The Schroedinger equation for the zero-field sawtooth
barrier is:

2 2
—_ B M + eFeff ZlP = Ey (105)
2mggs  gz2

It an external, constant electric field is applied as well, another term, (e Fap 2), for the
external field, is added to the Hamiltonian and the Schroedinger equation becomes:

2 2
N G e(Feff + Fap)zd/ = Ey (106)
2mgr gz2

If the effective mass is not a function of z, a direct solution in terms of the Airy functions is possible
in the same way it is carried out for a quantum well in a uniform field. Actual devices, however, are
made from graded band-gap Al(x)Ga(1-x)As, and the effective mass is indeed dependent on z. By
using the transfer matrix method, this complication of the Schroedinger equation is circumvented
by approximating not just the potential, but the effective mass gradient as well, by a series of small
steps of constant value.

Suppose there is an N-tooth sawtooth barrier for which the T-E and J-V curves are
sought. Each barrier is divided into n intervals of width Az = b/n, and for each of which the
potential drop is given by:

AV, = (Vo * eFapb) (107)

i
n
The solution to the Schroedinger equation in each interval is, as usual:

ikl-z —ik”z
V@) =A .e 4 + B,.e ' (108)
Li )i Li

[

where:

35



_\/zmef‘f (jaz) (E - (Volb + e Fap)(l b+(j—1) AZ)) (109)
i h

k|

The transfer matrix at each step is:

+k|,j+1)ei(kl,j+1 -k 2, (1 _kl,j+1)e_i(kl,j+1 + Ky j 2y

1

( k, : k, -

M|- - l ’meﬁ (zi) l,i !
2N mg ()

J
(1 _'_‘Liﬂ)ei“‘l.m + k7 (1 +M);i“‘i, i+1 ki)

Ky, ki (110)
where:
i _\/2mg (7 + 82) (Eh— (Voo + eFyp) 7)) 1)
and:
Z); = {ib +,jAZ) (112)

The transfer matrix through the right-most edge of the 1th sawtooth handies a potential
drop of Vg, the peak barrier height:. . _

BT TR S , -
RN R ] K e—.(k;‘+k| ) 2
k- kT

+
_1m I
M=~ = {(113)

! 2 m
1_& ei(k,++ kT )z | E e—i(kf' — k7) 2
kT kT

ﬁ

where:
¥ ¥ —c __y—
. N2miE- V) __JamilE-vy)
Ky = (114a) Ky = ———— (114b)
and:
VT = (Vo+eF, 2) (115a) Vi = eFa7 (115b)
2, =1b (116)
m] = Mege 1b) = Mo (117a) my = Mg (0) = m .o (117b)
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The transmission coefficient and tunneling current are computed from the element M4 of
the overall transfer matrix exactly as for the MSB described in the previous section. Assuming that
the effective mass is graded in some manner over the barrier width, when the multiplication of all
the transfer matrices is carried out, the prefactors containing the ratio of the effective masses to
the right and left of each step, do not cancel as they did for the MSB with alternating layers. This is
a consequence of the asymmetry of the sawtooth barrier. In AlGaAs sawtooth barriers, the
triangular shape is accomplished by linear aluminum concentration grading. The attendant
gradation of the effective mass must be accounted for by considering the functional dependence
of meff(z ) at each step when the transfer matrices are computed. This is because the effective
mass has a strong effect on the number and energy levels of the resonances supported by the
structure, just as in the MSB and quantum well.

The AlGaAs multiple sawtooth barrier which finds application as an avalanche photo-diode
is operated under high reverse bias. This means that the applied field is of opposite sign to the
effective field caused by the band-gap grading in each layer. As the applied field is raised, at some
value it will exceed the band-gap grading and the sawtooth will become a staircase structure.
(Refer to Figure 21) The value of the applied field where this occurs is:

F . = — _2 (1 1 8)
staircase eb

At this point there are no longer any barriers through which to tunnel. It is expected that the
transition from sawtooth to staircase should be reflected by a change in the character of the J-V
characteristic. In this respect a multiple sawtooth barrier is much ditferent than a multiple step

barrier.
2.C. Al{x)Ga(1-x)As Heterostructures
2.C.1. Propertles of Al(x)Ga(1-x)As

Superlattices of quantum wells and barriers, in real semiconductor materials such as
Al(x)Ga(1-x)As, are made possible by the conduction and valence band discontinuities occurring
at interfaces of materials with different band structures. In Al(x)Ga(1-x)As, the energy band
structure depends on the aluminum content, x. By combining layers of differing Al content, it is
possible to adjust the band-gap on either side of the interface and in that way to tailor the
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conduction and valence band drscontmumes These discontinuities are what form the barriers to
electron andihole transport through the superlamce In tunneling calculatlons 5 for Al(x)Ga(1 x)As
superlattices, it is thus necessary to know the relationships between composition, energy band
structure, and band alignment at heterojunctions.

Carrier transport through a superlattice is also dependent on the canler eﬂectrve mass at
every point in the structure. The effective mass in semiconductors is generally a function of the
energy band structure, and in Al(x)Ga(1-x)As it is therefore dependent on x. Tunneling
calculations ln Al(x)Ga(1 x)As thus also require some knowledge of the relatronshlp between

composmon band slruolure and eﬂect-ve mass

In lhrs study, only lunnelrng ol electr ns between dlrecl conducllon bands is consrdered
lhe du’ecl conductlon band allgnment at GaAs-

The mformatlon used in these calculatuons is:
Al(x)Ga(1-x)As heterojunctions, and the electron effective mass in the drrect conducllon band
mlnlmum as a function of x. The effect of non- parabolrcrly of the bands on the eflectlve mass of
electrons at high energy, for instance, when the electron encounters a step in a staircase
superlattice, is neglected. The effective mass is assumed scalar.

In the sectrons below there is a brief discussion of the energy band structures of GaAs,

AlAs and Al(x)Ga(1 x)As covenng only the propemes needed to perform lunnelmg calculations
for Al(x)Ga(1-x)As superlattices in the effective mass approximation.

2.C.1.a. GaAs Energy Band Structure and Effective Masses

Pure GaAs is a direct-gap material: its conduction and valence band extrema occur at the
Brillouin zone center. Figure 22 shows the <100> and <111> energy band diagram for GaAs (33).
The two lowest -energy conduction bands are shown T and Xqc, the drre&and indirect bands,
respectively. Also shown are the three highest-energy valence bands: I'ty and I'2y, heavy and
light-hole bands, respectively, and a third, 'y, split off by 0.36 eV from the other two by spin-orbit
coupling.

The direct band-gap, at the zone center, is 1.44 eV. The indirect X¢ minimum is 0.38 eV
above the direct minimum. In thermal equilibrium, free carriers are found only in the lowest
conduction band minima, although scattering of electrons by strong electric fields can excite them
into X1¢. (29) This effect has been neglected in this study. Density-of-states effective masses for
electrons and holes in GaAs have been determined (18), and are used throughout the present
study: this is quite appropriate for the I'y¢ band in GaAs, for which the constant E(k) surface near
the band minimum is spherical, and hence, for which the effective mass is actually scalar. (For the
hole bands T'yy and I'ay, this is a less satistactory approximation, since these bands are non-
parabolic and anisotropic.) The electron effective mass mr at I'i¢ is 0.0636 +0.002 (at 290 K); for
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electrons in X1, My is estimated as 0.39. The heavy-hole effective mass in I'1y is approximately

0.68.
2.C.1.b. AlAs Energy Band Structure and Effective Masses

Figure 23b (34) shows the <100> energy band structure of pure AlAs: inspection of this
diagram shows that AlAs is an indirect-gap material, unlike GaAs. As Figure 23 shows, however,
the symmetry of the conduction and valence bands is similar in the two materials. The indirect
band-gap in AlAs is 2.2 eV; the band gap at the zone center is 2.9 eV. The energy separation of
I'1c and X4 is 0.877 eV. As in GaAs, there are two degenerate valence bands with maxima at the

zone center.
The density-of-states effective masses for AlAs have been determined as follows: in Xy,

my Iis 0.37, in T'yc mr is reported as 0.128 to 0.15, depending on the method of calculation. (18)
The heavy-hole mass in I'qy is estimated as 0.85.

2.C.1.c. Al(x)Ga(1-x)As Energy Band Structure and Effective Masses as a
Function of x

In the mixed crystal Al(x)Ga(1-x)As, the band structure and effective masses depend
strongly on the aluminum concentration x. Since the pure compounds AlAs and GaAs are indirect
and direct gap materials, respectively, there is naturally an aluminum concentration at which the
Al(x)Ga(1-x)As changes from one type of material to the other.

Figure 24 shows how the energy gap in Al(x)Ga(1-x)As depends on x at room
temperature (19). The band-gap at I'1¢ increases with x, from 1.43 eV in pure GaAs, to 2.9 eV in
pure AlAs. The experimentally measured band-gap at I't¢ is (18):

E, = 1424 + 1.266 x + 0.26 x2 (119)

The quadratic term is relatively small compared to the linear term in x, hence Eg is roughly linearly
dependent on x. The gap at Xy increases less rapidly with x, and intersects the I'yc curve at a
band-gap of 1.96 eV, when x is approximately 0.4. The band-edge separation between X and
I'1¢ has been reported as (18):

A = 0.380 — 0.892 x — 0.365 x2 (120)
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For x greater than 0.4, Al(x)Ga(1-x)As is an indirect-gap material. In fact, although the X1c -
Iy crossover occurs at x = 0.4, Figure 25 (18) shows that already half of the conduction electrons
are in the X1 minimum when x is only 0.3. This is because, even though the X1c minimum is still at
higher energy than that of T'yc, the density of states is a factor of 45 greater at Xq¢ (18). This
means that for GaAs-Al(x)Ga(1-x)As heterojunctions where x is greater than 0.4, direct-indirect
band tunneling plays a dominant role in carrier transport across the interface. Since the
calculations presented here address only direct-direct band tunneling, treatment of GaAs-
Al(x)Ga(1-x)As heterojunctions is 'réstﬁri'ctgq to compositions with x < 0.4. ’

The density-of-states effective masses for Al(x)Ga(1ii)Ks,”65tained by linear interpolation
with x (18), gives the following relation for my, the effective mass of electrons in X¢:

m, = 0.39 {(1-x) + 0.37 x (121)

For mrin I'yc, the experimentally measured band-gap Eo was used to find the spin-orbit

splitting of the mixed crystal; mr is estimated using this information as (18):
mp = 0.0636 + 0.0552 x + 0.0092 x2 (122)

This is the relationship used throughout this work for the electron effective mass in Al(x)Ga(1-
x)As: the effective mass mr ranges from 0.0636 in pure GaAs, to 0.0872 in Al(0.4)Ga(0.6)As. For
sawtooth barriers in Al(x)Ga(1-x)As, the linear grading of Al results in approximately linear band-
edge grading. Inspection of equation 119 for the band-gap as a function of x, however, shows
that there is a slight bowing, indicated by the small quadratic term. Likewise, the linear aluminum
grading results in a parabolic z-dependence of the effective mass m in the sawtooth barrier,
reflected by the small quadratic term in equation above. The bowing of the band-gap was
neglected, but the parabolic term in the effective mass was taken account of in these tunneling

calculations for AiGaAs sawtooth superlattices.
2.C.1.d. Band Alignments at GaAs-Al(x)Ga(1-x)As Heterojunctions

The phenomenon giving rise to barriers to electron and hole transport through
semiconductor superlattices, is the misalignment of conduction and valence band edges when
materials with different band structures are brought into contact. The theoretical and experimental
determination of these band misalignments in heterojunctions is difficult and, for GaAs-Al{x)Ga(1-
x)As interfaces, is still not completely settled (13,35-40). In this study, the average values of the
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best available measurements were used for the I'yc band-edge alignments. These are
represented in Figure 26 (courtesy of R. C. Miller, ATT-Bell Labs) showing AEc as a function of x.
Note the shift to the indirect minimum at x = 0.4, where AE. is 0.33 eV. Up to this point the ratio of
the band-edge misalignments, AE¢:AE,, is approximately 60:40. The 0.33 eV direct conduction
band-edge misalignment at x = 0.4, is the largest attainable in GaAs-Al(x)Ga(1-x)As
heterojunctions, before interband tunneling takes over. This may be a practical limitation on the
efficiency of electron impact ionization in AlGaAs staircase avalanche photodiodes, since the
probability of impact ionization at an interface is directly related to the magnitude of AE there (3).

2.C.2. Some Previous Tunnellng Calculations In AlGaAs
Heterostructures: Tunneling In Multiple Step Barriers, Stark Shift of
Bound and Quasi-Bound States In Single Quantum Wells

In the section below, some previous solutions to two important problems are outlined.
Both problems are relevant to the problem of tunneling in graded band-gap supertattices.

The first work to be discussed consists of tunneling calculations by Esaki and Tsu (11) for
multiple step barriers formed by GaAs-Al(0.5)Ga(0.5)As heterojunctions. They obtained the
transmission coefficient T(E), and the tunneling current J(V), for a small number of barriers. The
approach they adopted is very similar to the transfer matrix method used in this study. Their results
for step barriers are qualitatively somewhat similar to those expected for a sawtooth array of the
same barrier height, composition, and roughly the same spacing. For these reasons, the results of
Esaki and Tsu for MSB's were reproduced by the method used in this study in order to verify its
accuracy, since there are no prior tunneling calculations for sawtooth superlattices with which to
compare.

The second work 1o be discussed is a calculation by Austin and Jaros (41), of the Stark
shift of quasi-bound states in a single GaAs-Al(0.5)Ga(0.5)As quantum well, in an unrestricted
uniform electric field. This work is reviewed primarily to show how the spatial extent of the applied
field affects the calculated Stark shift. This is relevant to tunneling calculations for sawtooth
superlattices, since practical devices will be operated by applying an electric field that is contined
to the superlattice between two metal contacts. Assumption of an unrestricted uniform field will
lead to the wrong functional dependence of the Stark shift. In the present work, the results of
Austin and Jaros for a single quantum well in a uniform field, are reproduced by means of the
hybrid Airy function-transfer matrix method detailed in section 2.B.6.a. above. Then, the same
calculation is repeated for the well in a localized electric field. The results, which show the
consequences of the geometry of the electric field for the calculated Stark shift, are presented in
a later section.
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2.C.2.a. Esakl - Tsu Tunneling Calculations for the Multiple Step Barrier

Esaki and Tsu (11) performed tunneling calculations for conduction electrons in two,
three, and five barrier GaAs-Al(0.5)Ga(0. S)As MSB 's. The barrier he'ghts were taken as 0.5 eV.
(The data in Flgure 26 givmg AEc as a functlon of x, would have set the direct conduction band
misalignment at 0.4 eV at x = 0.5, instead of 0.5 eV) The barriers were 2 nm wide and 5 nm apart.
(See Figure 27) Working within the effective mass approximation, they do not cite the values used
for the effective masses in the well and barrier layers, nor do they quote a source. It is likely that

the values they used were “close to those calculated by means of equatnon 122 for the T'1¢
effective mass: 0.0636 in pure GaAs, and 0.0935 in Al(0.5)Ga(0.5)As. These are the values used
in reproducing their results. In calculating the J-V curves fdr'*tﬁ’é*s’é"MSBr‘s,' Esaki and Tsu
postulated a constant electric field distributed over the length | of the superlattice. They use a

transfer matrix method which is outlined below.
The total energy E for an electron in this one dimensional superlattice is the sum of

longitudi inal (ln the direction of the superlatttce) ‘and transverse parts:

E - g + 2K (123)
and likewise the wave function is:
Vo= Uy W (124)

For an N period superlattice, the wave functions immediately to the left and right of the
superlattice are:

ik, z —-ik
v = *lu(e L” + Re L) (125a)

ikRz

Y =Ty e (125b)

R and T are the reflection and transmission coefficients for the structure. They are obtained from a

product of the transfer matrices at each barrer:

T i
- M L] MZI . 80 M *® & MN ( )
(0) 1 p R (126)
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where Mp is obtained by matching yp and yp at each interface:

[ ikpegp42 Jepr29ps2 Kp+19p41 e o 4 +i< kp\) . ko
1 kp+1 k;:u-M
Mg =~ (127}
4
,_'kp+2dp+2 _e"kp+2 dp+2 _i(krﬁ1),kp+1dp+1 _(kg1 ekp+1dp+1 1—i( kg ) 1“( kg )
kp+2 kp+ kp-ﬂ kp+1
and where:

V2mpp (V- E) (128)

kp 5

Vp and mr,p are the potential and the effective mass in the pth layer of the superlattice. This
transfer matrix gives the same resuits as the transfer matrix defined in section 2.B.6, however, the
identification of the coefficients of the wave functions as in equation 125 above results
immediately in the expressions below for the transmission and reflection coefficients:

M M
R=-—12 (129a) T = Myq—Myy- 2 (129b)
My, M22

This is the expression for T(E) that the authors use.

In calculating the J-V curves for the MSB, they neglect the potential gradient within each
layer, and take account only of the potential difference between the centers of each layer. (Refer
to Figure 27) This is an approximation which, because of the small dimensions involved, is
probably acceptable.

The expression below is used to calculate the tunneling current:

de dk, [HE) - €EN] T* T ——9~ {130)
an ﬁ

where f(E) is the Fermi distribution function and:

(B0 BT )1

fE) = (131a)
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(Eq = (E; — ev)) /KT -1
flE") = (e( = Eg—oVI) AT ) (131b)
The Fermi level, Ey, is taken as 0.005 eV for GaAs with n = 1017/cm3. An integration of equation

130 over the transverse direction using the Fermi functions in equation 131, gives:

(E¢ — EQUKT
P Wl Teran [1%e ! dEg (132)
7253 -, JEf— Eq— eVIAT

For small values of T, J is reduced to:
E

em- f
J = (Ef — Eg) T* TdEg V >E; (133a)
27rzfl3
0
B~V E¢
emr
= =3 v T*TdEg + (Eg— EQ) T* TdEg v <E; (133b)
2n”h 0 £~V

In this manner the contribution of all electrons within about +kT of the Fermi level of the cladding

layer, is integrated into the total tunneling curmrent.

2.C.2.b. Stark Shift of Quasi-Bound States In GaAs-Al(0.5)Ga(0.5)As
Single Quantum Well

Austin and Jaros present an exact numerical calculation of the Stark shift of the quasi-
bound states in a single quantum well. The well they consider is one which they find supports a
single bound state at zero field strength. The well is 3 nm wide, 0.4 eV deep, and is formed
between two GaAs-Al(0.5)Ga(0.5)As heterojunctions. The authors work within the effective mass
approximation, taking the effective mass of the conduction electrons to be 0.067 inside and
outside the well, and neglecting the discontinuity at the edges. They find the Stark shift for both
electrons and holes, but only the results for electrons are discussed here.

The approach adopted is similar to the hybrid transfer matrix - Airy function solution

outlined in a previous section. The Hamiltonian used is:

I G- SN (134)
2mggg o °

T Ty
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for a uniform field Fap. The Schroedinger equation is then given by equations 69a and 69b:

2 2
_ A dty _ eFp2y = EY lz2| > a (69a)
2mp  d2?
2
_ 1:‘2 a4y _ (Vo+eFa 2y = EY 2| < a (69b)

where, as formerly, a is the well width and Vp its depth. The solutions to the Schroedinger

equation in each region are:

Y~ = aAi{—xT) z < -a {(135a)
¥, = CAi{-x,) + DBi(-x,) lz] < a {135b)
vt = EAi(—xT) + FBi(—xh z>a (135¢)

where:
_ . <2mre Fap) 1/3 2mpE 2 >
XT o= xS\ z + z| >a (136a)
T\Z (ZmreFap'ﬁ)Z/3

2mpeF. \13 2mp(E+V.)

x, = (_FEZJ.P_) . L 2‘/’3 l2| <a (136b)
(ZmFe Fap'h)

The authors match these wave functions and their first derivatives at both edges of the well,
obtaining the coefficients of each of the components. They state that resonances, or quasi-
bound states, are characterized by an abrupt increase of x in the phase ¢ in the equation:

F
tang = ( £ ) (137)

This is another way of stating that the ratio of the downstream wave function components, Bi(-x ) :
Ai(-x ), must be maximized for a quasi-bound state. By varying the applied field Fap, calculating the
ratio F/E, and searching for shifts of x, they obtain the quasi-bound state Stark shift. They find a
Stark shift with quadratic dependence on the field, for field strengths between 100 and 500
kV/cm. Their results agree with those previously obtained by means of variational calculations.
(42,43)

The authors neglect the effective mass difference inside and outside the well. Outside
the well, using equation 92 and x = 0.5, Mg is 0.0935, almost 50% higher than the value inside
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the well. Neglecting this difference leads to an error in the calculated energy level of the
resonances. This is discussed in greater detail in a later section, where their results are compared

with those obtained in this study.
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3. RESULTS AND DISCUSSION
3.A. Scope
3.A.1. Description of Work

The aim of this work is to gain an understanding of the tunneling properties of electrons in
graded band-gap AlGaAs sawtooth superlattices. Al computations are carried out by means of the
transfer matrices described in the theory section, working entirely within the effective mass
approximation. T-E and J-V curves are here presented for these sawtooth structures.

In order to put these results in the context of previous work on conventional step barrier
superiattices, tunneling calculations for some other simple structures are also presented. Transfer
matrix tunneling calculations for single and multiple step barriers under constant external electric
fields are reported. The effects of the external field on the resonances supported by these
structuras are discussed, and J-V curves are presented for the MSB. In particular, results obtained
here for Al(0.5)Ga(0.5)As-GaAs MSB's are compared to those obtained by Esaki and Tsu (ref) for
identical structures. This is done to demonstrate the accuracy of the computational method used
here.

Bound and quasi-bound states of Al(0.5)Ga(0.5)As-GaAs single quantum wells are
calculated, along with their Stark shift under constant electric fields. These calculations are done
for the two configurations of uniform and localized field, in order to illustrate that, which of the
above is chosen will determine whether the calculated Stark shift is quadratic or linear. These
results are compared with those obtained by Austin and Jaros (ref) for an identical quantum well
under uniform fields, again by way of validation of the present work.

Finally, tunneling calculations for sawtooth barriers and superlattices are reported. The
properties of sawtooth and step barriers are compared, and similarities between MSB's and
sawtooth superlattices are pointed out. Throughout, particular emphasis is placed on the
consequences of the effective mass variations in all the structures studied here, and need to use
modified wavefunction connection rules at interfaces where the effective mass makes a

discontinuous change.
3.A.2. Approach

All computations are carried out by means of the matrix methods described in the
preceding theory section. VAX Fortran computer programs computing the T-E and J-V curves for
all step and sawtooth barriers and arrays, and the bound and quasi-bound states and Stark shifts
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for single quantum wells, are found in Appendix A, along with descriptions of the operation of
each program. All programs involving variations in the effective mass use the modified connection

rules described in section 2.A.
3.B. Single Step Barrier

Tunneling calculations for single siép barriers are done in the programs ZIGGURAT and
ZIGGEFFMASS. The former assumes a constant effective mass equal everywhere to mg, while
the latter models Al(x)Ga(1-x)As-Al(y)Ga(1-y)As step barriers, accepting the aluminum
concentrations x and y as inputs, and calculating meff inside and outside the barrier from equation
122. Both programs accept the zefd;fiéld barrier héight Vo and widtﬁ é,i énd' the use of
ZIGGEFFMASS requires choosing Vg to agree with AE given in Figure 26 as a function of x and y
at the interfaces. The applied field Fap'enters as a parameter: each run of the program then
produces a file of T versus E, for a given value of Fap, which can be plotted. Both programs model

the barrier in a localized field restricted to the barrier.

3.B.1. Single Step Barrier: Zero external fleld

Consider a single GaAs-Al(0.4)Ga(0.6)As step barrier 10 nm wide. The barrier height Vg

~must be 0.33 eV, according to Figu}é 26The effective mass inside the barrier is 0.0872, while

outside it is 0.0636. The T-E curve for this barrier is shown in Figure 28, wrhérre the energy ranges

from 0.5 to 1.5 times the barrier height. The first transmission maximum occurs at 0.372 eV, well

above the barrier heightf this curve is described by equation 28 for E > Vg, and by equation 31 for
E < Vp. :

To see the strong influence the effective mass can have on the T-E curve of step barriers,
refer to Figure 29, which shows the curve for a barrier of identical height and width as the one
above, but with constant effective mass equal to mq. The first maximum occurs at 0.334 eV, only
slightly above the barrier height, and five more closely-spaced peaks follow. This curve is
described by equations 29 and 32, above and below Vg, respectively. Equation 30 gives the
energies of the maxima in this case.

Further differences between the two barriers are evident in Figure 30, where their T-E
curves are overlapped. The effective masses my and mg, and their relative difference, (m1 - my),
entering into equations 28 and 31, result in higher transmission minima throughout the range, in
broadened resonances shifted to higher energies, and in lower-frequency transmission
oscillations. The latter is the dominant effect, and is caused by the effective mass inside the
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barrier, mo, appearing in the argument of the sine, being a great deal smaller than mg. The
elevated minima however, reflect the effective mass difference (m4 - mp), which is negative and
makes the denominator in equation 28 smaller. Figure 30b shows this: the T-E curve for a step
barrier with constant megyt = Mo, is superposed on Figure 28. The two curves agree except in the
absolute values of the transmission coefficient, which are highest when the mass difference (my -
mo) is retained. In AlGaAs step barriers, this difference is always negative; hence the minima are

always higher than those where the effective mass is taken as constant.

3.B.2. Single Step Barrier: Non-Zero Field

in considering the effects of a constant electric field on the transmission properties of
single step barriers, it is easiest to start with the constant mass case (Mgt = Mg), and then show
how the effective mass further alters the picture when dealing with AlGaAs. Unlike the zero-field
case, there is no analytical expression for T(E) for a step barrier under a constant field.

T-E curves for the 10 nm, 0.33 eV high barrier were obtained, using the program
Z2IGGURAT, for applied field strengths Fap, of 2 and 5x10-2 eV/nm. These are shown together
with that of the zero-field barrier, in Figure 31. The field deforms the barrier to a thinner, triangular
shape, and this facilitates tunneling at energies below Vy. In fact, resonance peaks occur at
approximately 0.297 and 0.320 eV for Fap = 2x10-2 eV/nm, and at 0.255 and 0.300 eV for Fap =
5x102 eV/nm. This is a major effect of the applied field, since resonance maxima below the top of
the barrier are not possible when there is no external field, as equations 31 and 32 show.

The broadening of the peaks evident in Figure 31, is a consequence of the tapered
thickness of the barrier: for E greater than the lower edge of the barrier, there is no longer a single
barrier width to serve as the resonance criterion:

sin kpa = nll {138a)

Instead, there is a spread in the wavelength over which some kind of resonance can take
place, because the width of the barrier varies. The field not only broadens the peaks, but causes
them to be more widely spaced for the same reason.

Another striking effect of the field is to lower the contrast between the resonance peaks
and valleys. For any non-zero field, the peaks no longer reach 1, and the minima are raised with
respect the zero-field barrier. The transmission curve asymptotically approaches 1 at infinite
energy. As Figure 31 shows, increasing the field strength washes out the contrast of the peaks
and valleys, and slows the approach to the maximum value of 1, while increasing the amount of
tunneling below Vj.

49



When the 10 nm Al(0.6)Ga(0.4)As-GaAs step barrier is subjected to a constant electric
field, effective mass variations further change the T-E curves. T-E curves generated by
ZIGGEFFMASS for Fap = 2 and 5x10°2 eV/nm are found in Figure 32, along with the zero-field
curve. The increasing electric field has'an even more pronounced effect on the transmission
through the GaAs-Al(0.4)Ga(0.6)As step barrier, than it had when meit = mg throughout. The
same trends are evident in much greater force: the peaks are broadened and shifted to lower
energles, and their contrast is much reduced, relative to the zero-field case.

Figure 33 compares the T-E curves of the constant mass and Al(0.4)Ga(0.6)As barriers.
Figures 33a and 33b give the T-E curves for Fap = 2x10-2 and 5x102 eV/nm, respectively. Most
of the structure in the T-E curves of the constant mass barrier is obliterated by the smaller effective
mass of the Al{0.4)Ga(0.6)As barrier. Field-assisted tunneling is more probable through the
Al{0.4)Ga(0.6)As barrier at all energies, at Fap = 5x10-2 eV/nm. At Fap = 2x1 0-2 eV/nm, this effect
is less pronounced, but transmission minima for the Al(0.4)Ga(0.6)As are still higher than those of
the constant mass barrier.

Field-assisted tunneling calculations for AlGaAs step barriers should thus certainly use at
least the correct average effective mass, and optimally, the effective masses appropriate to the
barrier and adjacent layers. The former will result at least in the comrect peak locations,although the
absolute values of the transmission coefficient will be somewhat in error, away from the resonance
maxima. Simply using the free electronic mass throughout will lead to gross error in the T-E curves

obtained at all field strengths.
3.C. Single Quantum Well: Bound States and Stark Shift

In this section, the bound states of AlGaAs single quantum wells (SQW's) and their Stark
shift in a constant electric field, are obtained by means of transfer matrices. First, the zero-field
solution for the bound states is given: the role of the effective mass in determining the energy
eigenvalues of the SQW is described. The programs for the zero-field SQW bound states are
WELL and ALGAASWELL. Both programs accept values for the well width a and depth Vo, and
produce files of the total transfer matrix element M1 as a function of the energy E below the top
of the well, which is taken as zero. Minima in My indicate the bound states of the well. The
program WELL assumes a constant effective mass meff = Mo everywhere inside and outside the
well. The program ALGAASWELL, however, models SQW's formed by Al(x)Ga(1-x)As- Al(y)Ga(1-
y)As heterojunctions, and, just as the program ZIGGEFFMASS does, requires the x and y values
in order to calculate the effective masses inside and outside the well. Vg must be chosen in

accordance with AEc(x,y) read from Figure 26.
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The Stark shift of the energy eigenvalues of AlGaAs SQW's is obtained for constant
electric fields localized to an area surrounding the well, and also for unrestricted uniform fields.
This is done in order to show that, which of the two configurations is used, will determine whether
the Stark shift is linearly or quadratically dependent on the field strength.

The localized-field Stark shift is calculated in the program STARKMASS. This program
models a 3nm wide Al(0.5)Ga(0.5)As well under the field as shown in Figure 18c. This is identical
to the SQW studied by Austin and Jaros (41). The extent of the field is such that level of the
plateau downstream of the well is at the same level as the lowest potential in the well. This makes
sure that bound states in the well can tunnel out under a non-zero field. This allows a direct
comparison with the results for the unrestricted uniform field, where all bound states under any
field are susceptible to tunneling. In other respects, this program works identically to
ALGAASWELL, except that the applied field Fap enters as a parameter. Each run of the program
results in field-shifted minima in M1 4. Plotting the minimum M14 as a function of Fap then gives the
Stark shift.

The program AIRYWELL is used to calculate the Stark shift of a 3nm GaAs-
Al(0.5)Ga(0.5)As SQW, under uniform electric fields. This program accepts the applied field as a
parameter, and calculates the ratio (F/E) (of the inbound to outgoing wavefunction components
downstream of the well), as a function of the energy E below the top of the well. Maxima of [F/E|
indicate the bound state energy levels. Each run of the program gives these Stark-shifted levels
at a given field. These levels are plotted as function of the field strength.

3.C.1. Single Quantum Well: Zero-Fleld

The program ALGAASWELL gives the spectrum for a GaAs-Al(0.5)Ga(0.5)As SQW, 3nm
wide and according to Figure 26, 0.4eV deep. This is shown in Figure 34, where the total transfer
matrix element My is plotted as a function of of E. This well supports a single bound state at -
0.197 eV. This is in agreement with the resuits of others (ref) who first determined that these well
dimensions, along with an effective mass of 0.0636, result in a single level. There is also rough
agreement with an approximate calculation of the number and level of bound states, using
equations 66b and 66¢. These predict a single level at -0.211 eV.

The discrepancy between these values is a consequence of neglecting the effective
mass difference between the well and the adjacent layers. The program ALGAASWELL uses the
appropriate values of 0.0636 outside, and 0.0935 inside the well. If instead, an effective mass of
0.0636 is used throughout, then a single bound state at -U.217 eV is obtained. This is in excellent
agreement with an easily derived equation for the energy of the ground state of a finite quantum
well (44):
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E~v, - = v2 (138b)
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Figure 35 shows the M4 versus E curves overlapped for these two treatments of this
well: the bound state level is strongly affected by how the variation of mgy at the well edges is
handled. This illustrates the risk involved in épplying standard formulae to semiconductor
heterostructures. Most, if not all, of these take no account of the effective mass variations at

mterfaces and this will impair the accuracy of the results obtalned

To illustrate further how profoundly the effective mass mﬂuences the bound states of the
well, calculations for an SQW 3nm wide and 0.4 eV deep, but with the mass constant and equal to
mo, were repeated in the program WELL. The results are shown in Figure 36. Instead of a single

level there are four, and this is in agreement with the equation below giving the number of bound

states of a finite quantum well (44):

—
,]2 V_a
S>Y Teft %o Sy (139)

mh

N

Inspection of this equation shows that the number of levels that a well can trap is
proportional to the square root of the mass of the particle in the well. Since mq is approximately
sixteen times as great as Meff in GaAs, there are four times as many trapped states in this well.
Again it is apparent that the'appropn'ate effective masses must be used in calculations intented to
model real semiconductor heterostructures, potential wells in this instance.

3.C.2. Single Quantum Well: Stark Effect

When an electric field is applied to a single quantum well such as the one described
above, the bound states shift to lower energies inside the well. The magnitude and field-strength
dependence of this energy shift depend on whether the field is localized or unrestricted.

3.C.2.a. Single Quantum Well: Stark Effect Under Localized Fleld

First, the Stark shift for the 3nm AI(0.5)Ga(0.5)As single quantum well in a localized field is
calculated. In order to make a direct comparison with the work of Austin and Jaros and others (41-

52

v

LI

I 18y |



43) the effective mass is taken as 0.0636 everywhere, neglecting the discontinuity at the well
edges. It was shown above that this results in an error in the determination of the bound state
energy. It has no effect on the functional dependence of the Stark shift, however. In the program
STARKMASS the total transfer matrix element M4 is computed as a function of the energy and
field strength. These data are plotted in Figure 37; the field strengths range between 0 and 5x10°
2 gV/nm. The bound states, just as for zero field, are the minima in M1 1. It is easy to see the shift of
the bound state energies to deeper in the well as the field increases.

When these shifts are referred to the zero-field bound state energy of -0.217eV with the
differences plotted in Figure 38 as a function of the field strength, it is clear that the Stark shift is
linear. This effect is either explicitly described in the work of others, for instance, Schwartz in his
study of AlGaAs MSB's (17), or is implied in the results of still others. Esaki and Tsu (11) for
example, report J-V characteristics for MSB's, which, interpreted in the light of T-E curves for the
same structure, indicate a linear Stark shift of the resonances. (This is described in detail in the
following section). Here, the Stark shift of an isolated well is calculated. The common feature of
the isolated well and the MSB's studied in the works referred to above, is that the field is localized
around the structure in question.

3.C.2.b. Single Quantum Well: Stark Effect Under Uniform Field

Now the same isolated Al(0.5)Ga(0.5)As well in a uniform, unrestricted electric field is
considered. The program AIRYWELL computes the ratio F/E of the well as a function of energy
and applied field strength. Figure 39 shows F/E versus E for several field strengths between
1x10-2 and 5x10-2 eV/nm. The peaks in F/E, analogously to the minima in M4, indicate the
bound states. The shift in the location of the bound state is again to values deeper in the well, but
this time the shift is obviously not linear.

Figure 40 shows the bound state energy levels plotted as a function of the field strength.
A polynomial least-squares fit to the data results in a quadratic Stark shift:

- 1217 £2
E, - —221.85 — 09217 F% (140)

The energy shift with field strength is plotted in Figure 41 along with the same data for an
identical well reported by Austin and Jaros. Fairly good agreement exists between the two sets of
data. A larger shift is obtained by the present means, however, and the source of the discrepancy
is uncertain.
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The Stark shifts obtained from the localized and unrestricted fields applied to the well are
plotted together in Figure 42. The linear shift for the localized field is much larger at a given field
strength than the quadratic shift. In fact, the magnitude of the linear Stark shift is calculated
assuming that the geometric origin is centered at the left hand edge of the well. Comparing the

linear Stark shift with the product of the field strength and the well half-width, shows that the Stark
shift is entirely made up of the lowering of the potential in the center of the well, under the field.
This Is also observed when the Stark shift of the resonances of MSB's subjected to local fields is
calculated. The linear shift under localized fields appears actually to be just the shift in the base of
the well. For MSB's and isolated quantum wells alike, the virtual state is then still the result of
resonance of the wave off the sides of the well, only the wavevector is referred to the bottom of
the well, which is now shifted lower by the field. e

The Stark shift under unrestricted fields is in agreement with the results of others (41-43).
It is reported, however, that under stronger electric fields, (i.e. greater than about 1x10-1 eV/nm) it
departs from its quadratic dependence on the field. This regime is not explored in the present

study. - o T

In any case, it is clear that calculations of the Stark shift of the resonances in actual
semiconductor heterostructures should probably be made by assuming that the electric field will
be localized to the structure. The consequences of assuming an unrestricted field are that the
wrong functional dependence and magﬁi{dde will result. For this reason, the field-assisted
tunneling calculations for AlGaAs sawtooth superiattices, to be described below, are all performec

assuming localized fields.

3.D. Multiple Step Barriers

Tunneling calculations for multiplé Ws'iep barriers are preséhted in this section. The
transmission coefficient is computed as a function of incident energy, just as for the single step
barrier, under zero external electric field. In addition, the tunneling current as a function of applied
voltage is caiculated.

The tunneling calculations for AiGaAs MSB's are performed in the programs ALMSB and
JVALMSB. ALMSB computes the transmission coefficient for an MSB of an arbitrary number, N,
of periods, where a period is composed of a barrier and the well to the right of it. The applied
electic field may be varied as a parameter, so that T-E plots parametric in Fap may be generated for
a given MSB. The program Is similar to ZIGGEFFMASS, used for single AlGaAs step barriers,
except for the fact that the total transfer matrix is accumulated through several barriers instead of

one.
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JVALMSB computes the tunneling current as a function of the applied voltage, creating
data files from which J-V curves are made. It is a derivative program of ALMSB, differing only in the
use of a single incident energy of 0.005 eV, roughly equal to the Fermi energy in bulk GaAs. The
applied voltage is in this case the independent variable.

Both of these programs have analogues which compute the transmission coefficients and
tunneling currents through ideal structures where the effective mass is constant and equal to mg.
These are the programs MSB and JVMSB, respectively. Except for using a single, constant
effective mass throughout, they are identical to ALMSB and JVALMSB.

in the text below, first the T-E and J-V data are reported for 2, 3, and 5 barrier GaAs-
Al(0.5)Ga(0.5)As MSB's. These are the same structures studied by Esaki and Tsu (11): the results
of the present study are described and compared with theirs. The correlation of the transmission
resonances with features in the J-V characteristic is discussed.

Then, the same calculations are repeated for GaAs-Al(0.4)Ga(0.6)As MSB's of the same
dimensions and number of periods. This is done to provide a basis for comparison with the GaAs-
Al(0.4)Ga(0.6)As sawtooth tunneling calculations in the final section.

Results of tunneling calculations for ideal, mgg = mg, MSB's are presented as well, in
order to show once again the strong influence the effective mass has upon the resonances of a
quantum heterostructure.

3.D.1. GaAs-Al(0.5)Ga(0.5)As MSB's: Comparison with Results of Esaki
and Tsu

3.D.1.a. GaAs-Al(0.5)Ga(0.5)As MSB: Transmission Coefficlent versus
Energy

The MSB's for which Esaki and Tsu did tunneling calculations consisted of 2, 3, and 5
step barriers 2 nm wide and 5nm apart, and 0.5 eV high. These are the dimensions used in this
study.The barrier height of 0.5 eV is not an accurate representation of Ec for this composition. A
value of 0.4 eV, which was used in the bound state caiculations for the quantum well, is more
appropriate, according to Figure 26. The barrier height of 0.5 eV is used in the tunneling
calculations presented here, however, for purposes of comparison.

The transmission coefficients calculated in the program MSB, are plotted as a function of
energy in Figure 43a, b and ¢, for 2, 3 and 5 barriers respactively. Below the barrier height in each
case, there are two sets of resonances. The two-barrier MSB has a single resonance at 0.12 eV
and another, much broader, one at 0.43 eV.
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As pointed out in section 2.B.3, the occurance of resonances below the barrier height
(under zero field) is impossible in tunneling through a single step barrier. When two or more
barriers are involved, resonance of the wave with the wells between them is possible at energies
much below their height, and that is what is giving rise to the resonances seen in Figure 43.
characteristic of superlattices with even spatial symmetry, and these MSB's have this symmetry.
When it is broken by applying an electric field, the peaks no longer reach 1.

The three- and five-barrier MSB's have resonances which are split by coupling between
the two and four wells, respectively, formed by the barriers. The T-E curves for the two- and five-
barrier MSB's are shown on the same scale in Figure 44. There are four resonances distributed
around the each single peak belonging 1o the two-barrier structure; two at higher, and two at lower
energy. The off-resonance transmission coefficient is several orders of magnitude lower at most
energies for the five-barrier MSB due to the greater difficulty of tunneling through three more
barriers. o

The T-E curves calculated by Esaki and Tsu for each of the structures, are found in Figure
resonances are now centered at 0.08 eV and at 0.32 ev, instead of 0.12 eV and 0.43 eV. The
source of this discrepancy is unknown, however, the location of the resonances is very sensitive
to the values of the effective mass that are used in these calculations. It is likely that the authors
used somewhat different values than those used in this work; since they do not cite their values,
this is unresolved. Agreement is good enough to conclude, however, that the method used in
this study is vaiid.

3.D.1.b. Tunneling Current versus Applied Voltage

The tunneling current as a function of the applied voltage is calculated for these GaAs-
Al(0.5)Ga({0.5)As MSB's in the program JVALMSB. The incident energy is 0.005 eV, that is, the
Fermi level in n-doped GaAs where n = 1017/cm3. The applied voltage ranges between zero and
2 volts. This range is sufficient to show how the resonances of these MSB's influence their J-V
characteristics.

In Figure 46 are found the J-V curves for the two- and three-barrier MSB's. The curve for
the two-barrier MSB is particularly simple because there is only one well in the structure. There is a
current peak at approximately 0.23 V, and another broader one at 0.86 V. On the high-voltage
sides of these peaks are regions of negative differential resistance. These features are
consequences of the resonances supported by the MSB, and are manifestations of resonant
tunneling. There is a current peak at 0.23 V because half of this voltage is dropped at the center
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of the MSB, and this shifts the lowest resonance, located 0.12 eV above the bottom of the well, to
coincide roughly with the incident energy E = 0.005 eV. When this happens then resonant
tunneling through the first barrier is highly probable, and there is a corresponding peak in the J-V
characteristic. As the voltage is increased and the resonance is shifted below the incident energy
level, resonant tunneling declines, giving rise to the region of negative differential resistance. The
broad current peak at 0.86 V is likewise caused by the coincidence of the similarly broad
resonance at 0.43 eV, with the incident energy; in other words, when the voltage dropped at the
center of the MSB is 0.43 eV.

It is worth pointing out, that these features of the J-V curve indicate unambiguously that
the Stark shift of the MSB resonances is linear in the applied voltage or field strength. Also
implied, is the fact that the shift, under localized fiekds, is simply caused by a shifted baseline or
reference level. This is observed by others; for instance, by Schwartz (17), who reports a linear
Stark shift in the resonances of AlGaAs MSB's, when calculating the resonances by means of a
very similar transfer matrix technique. It appears likely, however, that if these calculations were to
be repeated for MSB's subjected to uniform fields, the Stark shift of the resonances would not be
linear, analogously to the behavior of bound states in single quantum wells.

The J-V curves obtained by Esaki and Tsu are shown in Figure 47. Comparison with
Figure 46 shows good agreement with the J-V curves calculated in the present study. This is a
significant validation of the transfer matrix method used here. The curves of Esaki and Tsu show
sharper peaks and deeper minima, however. This may be caused by two things. One is that they
did not use a single incident energy, but integrated, according to equations 133a and b, the
contribution of conduction electrons within about +/- kT of the Fermi energy. Another is that they
neglected the voltage gradients inside the barriers and wells, taking account only of the drop
between the centers of each. Although this is not a bad approximation for the barriers, which are
only 2 nm wide, it may be less satisfactory for the 5 nm well regions.

3.D.2. GaAs-Al(0.4)Ga(0.6)As MSB's and the Influence of the Effective
Mass

The resonances of the step barriers and the bound states of the single quantum wells
discussed in the preceding sections, proved 10 be strongly influenced by the values of the
effective mass used in calculating them. That the effective mass is similarly important to the
outcome of tunneling calculations for MSB's, is shown by the T-E curve caiculated for a two-barrier
MSB, identical in geometry to the Esaki-Tsu GaAs-Al(0.5)Ga(0.5) As MSB, but with an effective
mass Mgt which is constant, and equal to mg. These calculations are done in the program MSB.
Figure 48 shows this T-E curve and the one belonging to the two-barrier GaAs-Al(0.5)Ga(0.5)As
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MSB for which the proper effective masses are used. There is quite a significant difference
between the two. Instead of two resonances, there are now five below the barrier height. The
transmiésloﬁ cdefﬁcient is also lower by séveral orders of magnitude at most energies away from
resonance. Analogously to quantum wells, the number of resonances that an MSB can support is
proportional to the effective mass of the particle interacting with it. Similarly, the values of
transmission minima through a single sterp,t;grg'fgr’, are a function of the difference between the
effective mgﬁs;eg' inside and outside the bqfdgr. and it appears that thigi{glsq the 7cas:e for MSB's.

The data In Figure 48 above, illustrate the consequencéé of uSing a grossly wrong
effective mass in tunneling calculations for MSB's. Suppose instead that the electronic effective
mass of pure GaAs, megf = 0.0636, is used throughout, neglecting the change to meg = 0.0935
inside the barriers. This is the approximation frequently made in the calculations of the bound
states of single AlGaAs quantum wells, for instance in the work of Austin and Jaros and others (41-
43). It has already been shown that this strongly affects the location of the bound state in a single
GaAs-Al(0.5)Ga(0.5)As quantum well. - ,

Figure 49a shows the T-E curves for two MSB's: one of them the two-barrier Esaki-Tsu
MSB using the correct effective masses, ‘an>d the other of the same geometry, but using mgsf =
0.0636 everywhere inéjidéiéhaybméidé the barriers. The resonances in the latter case are more
widely spaced and slightly broader than those of the realistically modelled MSB, with the lowest
resonance shifted down to 0.10 eV, and the higher one to approximately 0.82 eV. The off-
resonance transmission coefficient is also higher throughout, because the average effective
mass is lower.

Figure 49b shows the resulting J-V curves for the above two structures. The current
peaks follow the same trends as the resonances of the T-E curves. When the effective mass is
taken as 0.0636 everywhere, the low- voltage current peak is shifted to 0.20 V from 0.23 V. The
tunneling current is approximately half an order of magnitude higher at all voltages, following the
behavior of the transmission coefficient, and the current peaks are broadened in the same
manner as the resonances in the T-E curve.

The T-E and J-V curves of Figure 49 show that it is necessary to take careful account of
the variations in effective mass in MSB's for accurate determination of the resonances. The MSB's
used to illustrate this, however, are somewhat unrealistic, because the barrier heights are not
correct for the assumed aluminum concentrations. These MSB's served mainly as a basis for
comparison with the results of Esaki and Tsu. Tunneling calculations for GaAs-Al(0.4)Ga(0.6)As
MSB's are now discussed. These are layer compositions for which the maximum direct conduction
band edge discontinuity, and hence, the largest possible barrier height, is 0.33 eV. Single step
barriers of the same composition were discussed in section 3.B. above. The discussion to follow
on such MSB's is aimed at providing a basis for comparison with sawtooth barriers which have this
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as the composition at the end of each layer. Results of tunneling calculations for these sawtooth
superiattices are found in the next section.

The T-E and J-V curves are calculated in the programs ALMSB and JVALMSB for GaAs-
Al(0.4)Ga(0.6)As MSB's. These MSB's have two and five barriers, 2nm wide and 5 nm apart (i.e.,
with the same number, width and spacing as the Esaki-Tsu MSB's just dealt with), and barrier
heights of 0.33 eV. These curves for the two-barrier MSB are presented in Figure 50a and b,
respectively. Shown together with them, for the purpose of comparison, are the T-E and J-V
curves for the two-barmier GaAs-Al(0.5)Ga(0.5)As MSB's.

In Figure 50a, the upper T-E curve belongs to the GaAs-Al(0.4)Ga(0.6)As MSB. The
resonances are shifted slightly to lower energies, and are broadened: the lowest resonance
occurs at roughly 0.09 eV, and the upper one at 0.37 eV. The off-resonance transmission
coefficient is also raised by at least an order of magnitude. In this case, these differences are the
result not just of changing the value of the effective mass inside the barrier, (and hence also the
average value for the MSB), but also of the fact that the barrier height is lower, at 0.33 eV instead
of 0.5 eV. The lower average effective mass and the lower barrier height both contribute to
greater probability of tunneling through this structure than in the Esaki- Tsu MSB.

In Figure 50b, again the upper curve belongs to the GaAs-Al(0.4)Ga(0.6)As MSB. The
features of this simple J-V curve follow from the T-E curve: there is a current peak at approximately
0.18 V, or at twice the energy of the lowest resonance, and another very broad one around 0.75
eV. The tunneling current is generally one half to one order of magnitude higher throughout than
for the GaAs-Al(0.5)Ga(0.5)As MSB.

3.E. Sawtooth Superlattices

In this final section, the results of tunneling calculations for sawtooth barrier superiattices
are presented. The transmission coefficient as a function of incident energy, and the tunneling
current as a function of the applied voltage are computed, and the results are compared with
those obtained for step barriers.

The transmission coefficient is calculated by the matrix method outlined in section
2.B.6.d., in the programs SAWTOOTH and ALSTAIR. These programs are found in Appendix A
along with a description of their operation. Both programs accept the number of barriers, N, and
assume right triangles, accepting their base and altitude. The applied electric field enters as a
parameter. Data files of the transmission coefficient versus the incident energy are created and
used to make T-E plots parametric in the applied field. The program SAWTOOTH assumes a
constant effective mass equal to mg, the free electronic mass. The program ALSTAIR models
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graded band-gap Al(x)Ga(1-x)As superlattices, and accepts the maximum and minimum aluminum
concentrations within each barrier, assuming a linear concentration variation. The effective mass at
each point in the barrier is calculated by means of equation 122. The modified connection rules
taking account of the effective mass variation at each step are used in this program.

The tunneling current is calculated as a function of the applied voltage in the programs
JVSAWTOOTH and JVALSTAIR. These programs are derivatives of SAWTOOTH and ALSTAIR,
respectively. Instead of the incident energy, the applied voltage is the independent variable. An
incident energy of E = 0.005 eV is used just as for the MSB's of the preceding section. Data files
of the tunneling current versus applied voltage are used to construct J-V plots.

Below, results of tunneling calculations for singlé sawtooth barriers are first discussed and
are compared with those already obtained for single square step par[iqgs, in section 3.B. The
effects of external electric fields and the effective mass are disrcrzﬁrs's:ed. Then, tunneling
calculations for multiple sawtooth barriers are presented, and combared to those for similar
multiple step barriers, in particular the MSB's studied by Esaki and Tsu (11).

3.E.1. Single Sawtooth Barriers
3.E.1.a. Single Sawtooth Barrier In Zero External Fleld

There is no analytiéail solution for the transmission coeﬂicieﬁt through a sawtooth barrier,
hence transfer matrices are especially well suited for this problem. It is interesting to compare the
results of tunneling calculations for sawtooth barriers with those of step barriers, and to see what
are the effects of the graded barrier height. Recall that in section 3.B., the transmission
coefficient for 10 nm wide, 0.33 eV step barriers was caiculated. The T-E curves obtained showed
resonances above the barrier height: under zero field these occurred whenever the barrier width
was an integral number of half wavelengths. The character of these curves was strongly
influenced by the average effective mass as well as the difference in mass inside and outside the
barrier. The behavior of waves encountering sawtooth barriers might be expected to be similar.
The transmission coefficient for a 10nm wide, 0.33 eV sawtooth barrier with effective mass
constant and equal to mg, is shown in Figure 51a, along with the T-E curve from Figure 28 for a
step barrier of the same dimensions and effective mass. There is a striking absence of resonances
in the T-E data of the sawtooth barrier. Tunneling is much more likely through the sawtooth barmier,
for energies well below the peak barrier height and the maximum value of 1 is approached
monotonically. By way of contrast, the transmission coefficient through the step barrier is
extremely small until just above the barrier height, where it rises steeply to 1, and then oscillates

strongly.
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The smooth shape of the transmission curve for the sawtooth can be thought of as
resulting from the lack of a resonance condition such as exists in square step barriers. In fact a
similar effect has already been encountered in step barriers under external, constant electric
fields. There, the field effectively tapers the upper part of the barrier: the stronger the field, the
broader the resonances and the lower the contrast between peaks and valleys. The approach to
the maximum value of 1 is also more gradual as the field strength increases. The grade in a
sawtooth barrier is analytically indistinguishable from the grade in a step barrier induced by an
externally imposed electric field, so the similarity of their T-E data is not terribly surprising.

Figure 51b shows the T-E data obtained for a single GaAs-Al(0.4)Ga(0.6)As sawtooth
bamier, 10 nm wide and 0.33 eV high. The effective mass in this barrier is graded parabolically from
0.0636 to 0.0871 at the peak. The curve for this barrier is superposed on that of a 10nm wide
GaAs-Al(0.6)Ga(0.6)As step barrier. The same qualitative differences observed between the T-E
data of the constant meg, step and sawtooth barriers in Figure 51a, are also present in Figure 51b.
Considerably more tunneling takes place at all energies below the barrier height in the sawtooth,
and there is a similar lack of resonances.

In fact, as Figure 52 shows, tunneling through sawtooth barriers appears to be much less
susceptible to the influence of the effective mass than is tunneling in step barriers. In Figure 52
the T-E curves of the constant mass, mgft = Mg and the GaAs-Al(0.4)Ga(0.6)As sawtooth barriers
are plotted together. The two curves are quite similar. Just as observed in step barriers, the lower
average effective mass enhances tunneling at all energies. The transmission coefficient is 0.5 at
0.25 eV in the GaAs-Al(0.6)Ga(0.6)As sawtooth, only reaching this value at 0.33 in the constant
mass sawtooth. The similarity between the two curves is otherwise much stronger than between
T-E curves belonging to comparable step barriers (Refer to Figure 30a).

3.E.1.b. Single Sawtooth Barriers under Constant, Localized Electric
Flelds

Field-assisted tunneling through sawtooth barriers is expected to differ somewhat from
that through step barriers. If the field is constant, it results in an additional linear potential in the
region of the sawtooth. This potential just adds to the already existing one, and as pointed out
above, is not analytically different from it. This is different from imposing such a field on a step
barrier, since that results in a situation that is analytically different from the zero-field case. For this
reason it is expected that the effects of the field on tunneling through sawtooth barriers should be
less radical than when dealing with step barriers.

In this study, the applied field is taken as constant and opposing the gradient of the
sawtooth itself. This is illustrated in Figure 2. As the field strength is increased to the value of the
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sawtooth potential gradient, the barrier changes to a staircase potential. When this happens,
tunneling no longer occurs, since there is no longer a barrier to tunnel through. The transmission
coefficient must always be greater than zero for such a potential. Again, this is uniike field-assisted
tunneling through step barriers, where no matter how great the field strength, a barrier to
tunneling always exists.

Field-assisted tunneling calculations for 10 nm, 0.33 eV sawtooth barriers are done for
field strengths of 0.02 and 0.05 eV/nm. (These are same values used in the field-assisted
tunneling calculations for the 10 nm, 0.33 eV step barriers.) Calculations are done for both mgfs =
mg, and for the GaAs- Al(0.4)Ga(0.6)As sawtooth. The resulting T-E curves are énown for all field
strengths in Figure 53. As the field strength is increased, tﬁéjﬁtra;;;;ﬁizgi&?"béérfffid'ent also
increases at all energies, but the approach to 1 is slowed. Note that the T-E curves for F = 0.05

eV/nm are of a different characier than those obtained at 0.02 eV/nm: T is greater than zero for all
energies in the former case. Figure 54 shows the deformation of the sawtooth barrier under the
applied field. At F = 0.05 eV/nm, the structure is a staircase, not a sawtooth. This transition occurs
at a field strength of 0.033 eV/nm. At field strengths less than this, tunneling can still occur, and,
for the constant mass sawtooth, the T-E curves have an inflection peoint, at energies equal to the
peak height of the sawtooth, where the value of the transmission coefficient is 0.5. For the GaAs-
Al(0.4)Ga(0.6)As sawtooth, these inflection points are shifted to lower energies.

An interesting feature of the curves in Figure 53, is that as the field strength increases,

the difference between the T-E curves of the GaAs- Al(0.4)G

s and the constant mass

sawtooth barriers becomes less significant. The curves obtained at F = 0.05 eV/nm in fact are
practically identical. The reason for this is not apparent. This trendr Was not evident in the step
barriers studied here, although it might have been, in the limit of very high fields, which was not
adressed in this study.

Overall, it appears that single sawtooth bariers differ from step barriers in a few respects.
One is that, because of the sawtooth's graded thickness, transmission resonances are almost
totally supressed. This is a consequence of the lack of a resonance condition such as exists in
step barriers. Another is that the interaction of the incident wave with the sawtooth barrier
changes character at field strengths sufficient to deform the barrier into a staircase structure.
Finally, for reasons that are not clear, the influence of the effective mass is very much less
pronounced, and tends to become still less important as the field strength is raised. In the next
section, the same issues will be adressed for multiple sawtooth barriers.

3.E.2. Multiple Sawtooth Barriers
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Recalling that resonances below the barrier height and equal to one were possible in
superlattices of step barriers, one expects to observe a similar phenomenon in sawtooth
superiattices. The resonance peaks, however, are anticipated to be broader than those in MSB's,
because instead of square wells there are now triangular ones. Triangular barrier shapes result in
suppressed and broadened transmission resonances as was observed in single sawtooth barriers
and step barriers under external fields. Thus any resonance peaks found in sawtooth
superlattices are expected to be broader than those in similar MSB's of the same composition.

In Figure 55, the transmission coefficient as a function of energy is plotted for a two-barrier
sawtooth superlattice, with bases equal to 4.5 nm, peak heights of 0.5 eV, and mg¢ taken as
constant and equal to mg. Compare this with the same data for a two-barrier MSB, with 2nm wide
bases, 5nm apart, barrier heights of 0.5 eV, and mgg equal to mg, found in Figure 48. There are
indeed resonances in the transmission coefficient of the sawtooth superlattice, but they are fewer
in number than those of the MSB. Instead of five, there are only two occurring below the barrier
height of 0.5 eV. The upper resonances are considerably broader than those of the MSB. Finally,
the value of the transmission coefficient is higher, away from the resonances, than in the MSB,
except at the lowest energies, where the thickness of the sawtooth and the step barriers is the
same. These discrepancies between the two curves in Figure 55 are explained by the difference
in shape of the sawtooth and step barriers.

In Figure 56, the T-E data for two-barrier sawtooth superiattices with differing effective
masses are plotted. The data shown are for the same geometry as above, with Figure 56a
showing the transmission coefficient for mgg = mg, and Figure 56b showing that of a superlattice
with the composition in each barrier graded from pure GaAs to Al(0.5)Ga(0.5)As. The effective
mass is thus graded from 0.0636 to 0.0935 in each sawtooth. Comparing Figures 56a and b
shows that the effective mass variation eliminates two of the resonances occurring below the
barrier height. This is most likely a resuit of simultaneous shifting and broadening of the
resonances. A single, very broad resonance at approximately 0.31 eV persists, however.

it appears that in Al(x)Ga(1-x)As sawtooth superiattices, the effective mass variations have
a rather more pronounced effect on tunneling than in single sawtooth barriers. As Figure 53
illustrated, the T-E curves obtained for single sawteeth were quite insensitive to the values used
for the mass. This is evidently not the case for tunneling through multiple sawtooth barriers.

3.E.2.a. GaAs-Al(0.5)Ga(0.5)As Sawtooth Superlattices: Comparison with

Simllar MSB's (Esaki-Tsu)
Comparison is made in this section between G2As-Al(0.5)Ga(0.5)As step and sawtooth

superlattices. Since the tunneling properties of such MSB's are well understood, and calculations



have been done for them here and elsewhere, they provide a convenient basis for comparison
with sawtooth superlattices.

The transmission coefficient is calculated for two- and five-barrier sawtooth superlattices,
with bases of 4.5 nm, heights of 0.5 eV and with composition graded from GaAs to
AI(O 5)Ga(0 S)As These dnmensnons result in the same number of penods ‘and overall length for
sawtooth superlattices, as for MSBs with 2nm wide barriers 5nm apart. The transmission
resonances and consequent tunneling current-voltage characteristics should thus be somewhat
similar.

The T-E curves for the two-barrier steb and sawtooth superlattices are shown in Figure
57. Instead of the two resonances supported by the MSB, the sawtooth superlattice has only a
single very broad one around 0.31 eV. The effective mass gradient, as well as the barrier gradient,
likely contribute to the breadth of this resonance.

The T-E curves for the five-barrier GaAs-Al(O 5)Ga(0.5)As sawtooth superlamce and MSB
are found in Figure 58. The MSB supports two sets of resonances below the barrier height, each
resonance split by coupling into four peaks. These are centered around 0.12 and 0.43 eV. The
sawtooth superlattice, however, has only a single set of resonances. These are likewise four in
number and are centered around the two-barrier resonance at 0.31 eV. These four resonances
are much broader than those of the MSB. The transmission coefficient is higher for the sawtooth
barrier down to an energy of approximately 0.22 ev, below which energy the sawleeth are thncker
than t'h'eVStép barriers.

The J-V curves for the two- barner structures are found in F'gure 59. These curves are
both calculated assuming an electric field localized to the superlattice. Note that there is a
qualitative similarity between the two curves: a low-voltage current peak, followed by an area of
negative differential resistance (NDR), then another broader peak at higher voltage, also followed
by a regifhé of NDR. The current peaks of the sawtooth J-V curve are naturally broader than those
of the MSB, since the resonances are very broad. The appearance of regions of NDR in sawtooth
superlattices means that they may find novel applications in electronics, just as MSB's have (6).

It was shown earlier that the features of the J-V characteristic of this MSB were explained
by resonant tunneling between the incident energy level (0.005 eV), and the resonances shifted
downward by the applied field. The fact that the voltage peaks occur at twice the resonance
energy levels, implied a linear shift of the resonances under the field.

Comparison of the J-V characteristic of the sawtooth superlattice with its T-E curve,
however, indicates a different behavior under the field. There is a current peak at about 0.47 voits,
and another at roughly 1.3 volts. Neither of these would result from a resonance at 0.35 eV

shifted linearly downward with the applied field. It appears that for sawtooth superlattices, as the
applied field strength is raised, new resonances form in the triangular wells, which may, at certain
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values of the field, coincide with the incident energy of 0.005. In other words, the Stark effect in
sawtooth superlattices is more complicated than in MSB's. This is a consequence of the way the
sawtooth deforms under external fields. As the field strength is raised, the shape of the well
between the barriers changes; in particular, the slope of the leftmost edges decreases. This is
unlike the behavior of MSB's under uniform fields, as Figure 3 shows.

Figure 60 shows the shape of this sawtooth superlattice under applied voltages of zero,
0.47, and 1.3 V. At 0.47 V, there is still a small barrier to tunneling, but at 1.3 V the structure is a
staircase and no tunneling is occurring. At 0.47 V, a shallow state is still probably trapped between
the barriers, from which resonant tunneling can take place.

Figure 61 shows the T-E curve for this sawtooth superlattice under an an applied field
strength of 0.052 eV: this corresponds to an applied voltage of 0.47 V. A slope change is evident
at approximately 0.03 eV; another at around 0.35 eV. A shallow bound state may be hinted at by
the knee in the curve at 0.03 eV. If such a state does exist, however, it must necessarily be
difficult to resolve in the T-E data, since its energy level must be close to zero ( i.e.to the incident
energy level of 0.005 eV).

The peak at 1.3 V is a bit more puzzling, since no trapped states exist at such a high field.
As earlier observed in single step barriers, however, there can still be pronounced resonances at
energies well above the barrier height. This may explain the broad peak and region of NDR at
around 1.3 V.

3.E.2.b. GaAs-Al(0.4)Ga(0.6)As Sawtooth Superlattices

The preceding section explored the similarities between sawtooth superlattices and
multiple step barriers. it focused on GaAs-Al(0.5)Ga(0.5)As superlattices mainly because of the
abundance of existing data on MSB's of that composition with which comparisons could be made.
Al(x)Ga(1-x)As is an indirect gap matenrial for aluminum concentrations greater than approximately
0.4 mole fraction,however,and only tunneling between direct conduction bands is considered in
this work. Hence this final section will focus on GaAs-Al(0.4)Ga(0.6)As sawtooth superlattices, as
this is the composition giving the greatest direct conduction band discontinuity of about 0.33 eV.

The transmission coefficient of a two-barrier sawtooth superiattice, with 4.5 nm bases and
peak heights of 0.33 eV, is shown as a function of energy in Figure 62. Superposed is the T-E
curve of a similar GaAs-Al(0.5)Ga(0.5)As MSB. As might be expected, the curves are qualitatively
very similar. The resonance in the Al(0.4)Ga(0.6)As data is shifted to approximately 0.23 eV,
however, compared to 0.31 eV for the GaAs-Al(0.5)Ga(0.5)As MSB. Off resonance, the
transmission coefficient is also higher throughout the range. These changes are consegquences
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of the lower average effective mass throughout each barrier, as well as of the lower barrier height,
in GaAs-Al(0.4)Ga(0.6)As.

The tunneling current as a function of the applied voltage in the two- barrier superiattices
is shown In Figure 64. Again, a strong qualitative resemblance between the two curves is
observed. The tunneling current is greater in the Al(0.4)Ga(0.6)As superlattice by about two
orders of magnitude, and this naturally follows from the higher transmission coefficient observed
in Figure 62. A low-voltage current peak at roughly 0.35 V, followed by a region of negative
differential resistance is evident in the AI(0.4)Ga(0.6)As curve. As was the case for the
Al(0.5)Ga(0.5)As sawtooth superlattice, the location of this peak'imp'l'ies. a mbre complicated
change in the resonances under applied fieks than in MSB's. Certainly the shift is not a simple
linear function of the field strength.
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4. CONCLUSION

A transfer matrix method has been applied to quantum mechanical tunneling calculations
in GaAs-Al(x)Ga(1-x)As semiconductor heterostructures. The focus of this work was a novel type
of heterostructure in which the band gap is graded linearly, giving rise to a sawtooth superiattice.
Tunneling calculations for such a siructure are presented here for the first time. In addition,
tunneling calculations were performed for conventional step barrier heterostructures. The Stark
shift of the bound and quasi-bound states of single finite quantum wells was calculated as well.
Some conclusions are:

1. The Stark shift of bound states in single quantum wells can be obtained by the transfer
matrix method used here. The extent of the applied field, however, determines the functional
dependence of the Stark shift. If the field is restricted to an area near the well, the Stark shift is
linear in the field. If the field is infinite in extent, the shift is quadratic. The extent of the field must
be considered in tunneling calculations for sawtooth and step barrier superlattices as well.

2. The tunneling properties of step and sawtooth superlattices show some strong
qualitative similarities. Both structures can exhibit resonant tunneling, as evidenced by correlation
of transmission resonances with peaks in the current-voltage curves. However, the shift of the
resonances is linear in the field in step barrier superiattices, while in sawtooth superiattices the
shift is not a simple function of the field. This is because the two kinds of structure deform
differently under uniform fields. The sawtooth deforms into a staircase under a high enough field
strength, and tunneling no longer occurs since the barriers are eradicated. Step barriers always
present some barrier 1o tunneling no matter how strong the field.

3. The effective mass variations encountered in semiconductor heterostructures should
not be neglected. The conventional wave function boundary conditions at interfaces must be
modified to conserve probability current density when the mass is discontinuous. The range of
effective mass in the GaAs-Al(x)Ga(1-x)As heterostructures studied here was found to have a
significant effect on the outcome of calculations.

a. The number and level of the bound states in single quantum wells is strongly affected
by average effective mass, and by the discontinuity at well edges. Neglecting the average
effective mass results in a gross error in the number of levels, while ignoring discontinuities at the
well edges results in a significant change in their energy.

b. The use of the correct effective masses in single and multiple step and sawtooth
barriers is also important ,as the number and energy of transmission resonances is a function of

the average effective mass and the discontinuities at interfaces .In sawtooth superlattices the
parabolic effective mass gradient within each layer should be taken account of.
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2. Sawtooth Superlattice with and without Strong External Reverse Bias
a. Zero-field sawtooth superiattice
b. Strong external reverse bias Fjp, resulting in staircase superlattice,
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3. Step- and Sawtooth-Barrier Superlattices under Reverse Blas

a. Step-barrier superiattice under zero external field. Virtual states are shown;

b. Step-barriers under strong reverse bias. Virual states can still exist;

¢. Sawtooth-barrier superlattice under zero field. Virtual states are formed as in the case of step-
barrier superiattices;

d. Sawlooth-barrier superattice under moderate reverse bias. The applied voltage is less than the
sum of the barrier héights, and virtual, or quasi- bound, states can still be formed,

e.Sawtooth-barrier superlattice under strong reverse bias. Structure is actually a staircase and

quasi-bound states no longer are possible, although resonances still occur.
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9. Multiple Step Barrler with Three Periods

The single resonance at Eg is split into two levels at Eq + AE by coupling between the two wells.
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15. The Alry Function and Derlvative with Negative Argument.
a. Ai(-x)
b. Ai'(-x)
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18. Deformation of a Single Quantum Well In a Localized Electric Field.

The applied field shifts the bound and quasi-bound levels to lower energy.

a. Low field strength, with true bound states at Eg and Eq;

b. Moderate field strength, with one true bound state at Eg - A, and a quasi-bound state at Eq - A;

c. High field strength, only quasi-bound states remain.
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22. Energy Band Structure of Pure GaAs (<100> and <t111> directions) (33).
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(a)

(a)

23. Complex Energy Band Structures of pure

ENERGY (eV)

Complex k2

ENERGY (eV)

Com

i. (110) interface: a. GaAs b. AlAs;
ii. (100) interface: a. GaAs b. AlAs.

plex k1

{b)

(b)
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Complex k2

Complex k1

GaAs and AlAs (34)
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24. Energy Gap In Al(x)Ga(1-x)As as a Function of AlAs Mole Fraction x (19).
The x-dependence of the direct conduction band T'y¢ is shown by the solid line; that of the
indirect gap X1 by the dashed line. The direct and indirect minima are equal at x = 0.37.
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25. The Fractlon of Conduction Electrons Iin TI'q¢ of Al(x)Ga(1-x)As as a Function

of AlAs Mole Fraction x.(18)
Data are taken at 300 K. Dotted line is for degenerate case with N = 4x1017 ¢cm™ ; solid line is for

nondegenerate case with N = 4x1016 cm-3.
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26. Band-Edge Alignments at GaAs-Al(x)Ga(1-x)As Heterojunctions (R. Miller,
ATT-Bell Laboratories).
a. AE, conduction band misalignment;

b. AEy, valence band misalignment.

93



a)

b)

2nm —p

27. Esakl-Tsu Multiple Step Barrier Geometry (11)
a. Zero applied electric field;
b. Applied field strength F = F5p over the length | of the MSB.
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28. T-E Data for Single Step Barrier.
Barrier is 10 nm wide, 0.33 eV high. Effective mass is uniform and equal to free electronic mass

mg.
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29. T-E Data for Single GaAs-Al{0.4)Ga(0.6)As Step Barrler.

Barrier is 10 nm wide and 0.33eV high. Effective mass is m;, = 0.0871 inside the barrier, Mgyt =

0.0636 outside.
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30. T-E Data for Single Step Barriers 10nm Wide and 0.33 eV High.

a. Superposed T-E curves for GaAs-Al(0.4)Ga(0.6)As barrier, and barrier with uniform effective
mass Mg = Mg everywhere. Curve 1: GaAs-Al(0.4)Ga(0.6)As, mjp = 0.0871, mgyt = 0.0636;
Curve 0: mgi = mg;

b. Superposed T-E curves for GaAs-Al(0.4)Ga(0.6)As barrier, and barrier with uniform effective
mass Mgt = 0.0636 everywhere. Curve 0: GaAs-Al(0.4)Ga(0.6)As; Curve 1: Mgt = 0.0636.
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31. Effects of Applied Electric Fleld on Transmission Coefficient of Single Step

Barrler.
Barrier is 10 nm wide, 0.33 eV high. Effective mass = mg everywhere.

b. Fap =2 x10°2 eV/nm;
¢.Fap="5 x10-2 eV/inm.
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32. Effects of Applled Electric Fleld on Transmission Coefficlent of Single

GaAs-Al(0.4)Ga(0.6)As Step Barrler.
Barrier is 10 nm wide, 0.33 eV high. Inside the barrier mgs = 0.0871, outside the barrier mgg =
0.0636. Curve 0: Fap = 0; Curve 1: Fap =2 x10-2eV/nm; Curve 2: Fap =5 x102 eV/nm.
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33. Appllied Field and Effective Mass Effects on Transmission Coefficient of
Single Step Barrlers.

Barriers are 10nm wide, 0.33 eV high. The two curves in each figure are for a barrier with uniform

effective mass mef = Mg, and a GaAs-Al(0.4)Ga(0.6)As barrier: Curve 0: Mgt = Mg;  Curve 1: Mip =

0.0871, mgyt = 0.0636.

a. Applied field Fap = 2 x102 eV/nm;

b. Applied field Fap = 5 x10-2 eV/nm.
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34. Total Transfer Matrix Element My4 for Single GaAs-Al(0.5)Ga(0.5)As
Quantum Well: Bound State.

Well is 3 nm wide, 0.4 eV deep. This calculation took account of the efiective mass variation at the
well edges: the effective masses inside and outside the well are mj, = 0.094, mg,t = 0.0636. The
minimum of M1 gives a bound state energy of -0.197 eV below the top of the well.
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35. Bound State Energy as a Functlon of the Effective Mass Inside Well. *
Well is the same as that of Figure 34. The effective mass, however, is taken in this calculation as

0.0636 inside and outside the well. The new bound state energy is -0.217 eV below the top of -

the well, instead of -0.197 eV.
Curve 0: Effective mass = 0.0636 everywhere. Eg = -0.217 eV.
Curve 1: Effective mass = 0.094 inside the well, 0.0636 outside the well.Eg = -0.197 eV.
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36. Bound States In Single Quantum Well.
Well is 3nm wide, 0.4 eV deep. Effective mass is uniform and equal to mg. The minima in My

correspond to bound states. Using the free-electronic mass results in four bound states, in

agreement with Equation 139.
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37. Total Transfer Matrix Element M4 as a Function of Localized Field Strength.
Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. Each curve corresponds to a different field strength. Minima

shift to energies deeper in the well as the field strength is increased.
Curve 0: Fap =0; Curve 1:Fap=1 x10-2 eV/nm; Curve 2: Fap = 2 x102 eV/nm;

Curve 3: Fap =3 x102 eV/nm; Curve 4: Fap = 4 x10°2 eV/inm;
Curve 5: Fap =5 x10°2 eV/nm.
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38. Stark Shift of Bound State Energy Level under Localized Field.

Data are for single GaAs-Al{0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere. In this figure the Stark shift (referred to the zero-field bound
state energy) is plotted as a function of the applied field strength. The Stark shift is linear in the
field strength.
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39. The Ratio (F/E) as a Function of Energy and Applied Field Strength.

Data are for single GaAs-Al(0.5)Ga(0.5)As quantum well, 3 nm wide and 0.4 eV deep. Effective
mass taken as 0.0636 everywhere; field is uniform and unrestricted. Each curve is for a different
field strength; the maxima in the data correspond to quasi-bound states of the quantum well.
Maxima shift to energies deeper in the well as the field strength increases.

Curve 0: Fap = 1.0 x102 eV/nm; Curve 1:Fap=15 x10-2 eV/nm;

Curve 2: Fap = 2.0 x102 eV/nm; Curve 3: Fap =25 %102 eV/nm; and

Curve 4: Fap = 3.0 x102 eV/inm.
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40. Stark Shift of Bound State Energy Level Under Unlform, Unrestricted Field.
From Figure 39, the energy levels of the maxima in (F/E) are plotted as function of the applied field
strength. The bound state energies are quadratically dependent on the applied field strength.
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41. Stark Shift of Bound State Energy Levels Under Uniform, Unrestricted Field.
From Figure 40, the Stark shift relative to the zero-field level is plotted as a function of the applied
field strength. Also shown are the data of Austin and Jaros (41) for an identical quantum well.
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42, Stark Shlfts under Localized and Unrestricted Uniform Fields Compared.
From Figures 38 and 41, the Stark shifts calculated for a 3nm, 0.4 eV Al{0.5)Ga(0.5)As quantum
well are plotted together.
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43. T-E Curves for Two-, Three-, and Flve-Barrler GaAs-Al{0.5)Ga(0.5)As
Multiple Step Barrlers.

These are the results of transfer matrix calculations for step barrier superiattices identical to those

of Esaki and Tsu (11). Bamiers are 2 nm wide, 5 nm apart, and 0.5 eV high. Effective mass in the

barriers is mj, = 0.094, between the barriers mgt = 0.0636. Modified connection rules are used.

Figures a, b, and ¢ are for two, three and five barriers, respectively.
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44, T-E curves for Two- and Five- Barrier Esaki-Tsu Type MSB’'s
The T-E curves from Figure 43 for two and five barriers superposed. Note the splitting of single
resonances into four, caused by coupling between wells.
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45. T-E Curves for Two-, Three-, and Five-Barrler MSB's Calculated By Esaki

and Tsu (11).

Note the close agreement between these curves and those of Figure 43.
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46. J-V Curves for Two- and Three-Barrier GaAs-Al(0.5)Ga(0.5)As MSB's
These curves are calculated for the same MSB's whose T-E curves appear in Figure 43.
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Three-Barrier MSB's Calculated by Esakl

Note the agreement between these curves and those of Figure 46.
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48. T-E Curves of Two-Barrler MSB's: Influence of Effective Mass.

Both curves are for two-barrier MSB's with barriers 2 nm wide,5 nm apart, and 0.5 eV high. Curve 0
is for GaAs-Al(0.5)Ga(0.5)As MSB with effeclive mass variations taken into account, and Curve 1 is
for MSB with effective mass uniform and equal to mo.
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49. T-E and J-V Curves of Two-Barrler MSB's: Effect of Neglecting the Effective
Mass Step at 'I-rl:e'terojunctlons.
Data are for GaAs-Al(0.5)Ga(0.5)As Esaki-Tsu-type MSB's. Figures a and b are T-E and J-V curves
respectively. in Curve O,'the effective mass is taken as uniform and equal to 0.0636. In Curve 1,
the effective mass is 0.094 inside the barriers, and 0.0636 in the wells.
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50. T-E and J-V Curves for GaAs-Al(0.4)Ga(0.6)As and GaAs-Al(0.5)Ga(0.5)As
Two-Barrier MSB's: Effects of Composition

Data are for MSB's with barriers 2 nm wide, 5 nm apart. Figures a and b are T-E and J-V curves

respectively. Curve 0 is for GaAs-Al(0.4)Ga(0.6)As. Curve 1 is GaAs-Al(0.5)Ga(0.5)As.

117



// '[}U —

- /
S I e ey
24 26 28 30 32 34 36 38 .40 42 44 46 .48 50

o ucﬁ’
a) E (eV)

1.0 WWWW
T }/i / y

= - -4

oL ] i

~
1

| |

. /] H

| / | ]
I

B / ]
g J ] «

Py POV VUUOY DR G0 WU AUUSS SO0 FUVOY FUUU FUUN FUUUY VU UV PO
0 05 .10 .15 .20 .25 .30 .35 .40 .45 50 .55 .60 .65 .70

b) ) E (eV)

51. T-E Curves for Sawtooth and Step Barriers Compared.

Sawtooth barrier is 10 nm wide at the base, step barrier is 10 nm wide. Both are 0.33 eV high.
Figure a. Effective mass is uniform and equal to mg. Curve 1 is for the sawtooth, Curve 2 is for the

step barrier.
Figure b. Barriers are made of GaAs-Al(0.4)Ga(0.6)As. Effective mass is 0.0636 in GaAs, 0.0871 in
Al(0.4)Ga(0.6)As. Curve 0 is for step barrier, Curve 1 is for the sawtooth.
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52. T-E Curves for GaAs-Al(0.4)Ga(0.6)As Sawtooth Barrlers: Influence of the
Effective Mass.

Both barriers are 10 nm wide at the base and are 0.33 eV high. Curve 0 is for GaAs-

Al(0.4)Ga(0.6)As with effective mass vanations taken account of, and Curve 1 is for effeclive mass

uniform and equal to mg. Note the similarity between the two curves, as opposed to the same data

for step barriers.
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53. T-E Curves for Sawtooth Single Step Barrlers: Influence of Effective Mass
and Applied Electric Field Strength.

All data is for barriers 10 nm wide at the base and 0.33 eV high. Curve 0: Fap = 0, Megf = Mo.

Curve 2: Fgp = 0, GaAs-Al(0.4)Ga(0.6)As  Curve 3: F5p = 0.02 eV/nm, Meff = MO. Curve 4: Fgp =

0.02 eV/nm, GaAs-Al{0.4)Ga(0.6)As Curve 5: Fap = 0.05 eV/nm, Meff = M. Curve 6: F3p = 0.05

eV/nm, GaAs-Al(0.4)Ga(0.6)As )
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54. Deformation of Single Sawtooth Barrier under Applled Electric Field.
The shape of the barrier under Fap =0, 0.02, and 0.05 eV/nm is shown in Figures a, b, and c,
respectively. At F5p = 0.05 eV/nm the barrier is actually a staircase.
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55. T-E Curve for Two-Barrier Sawtooth Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. Effective mass is uniform and equal to mp.
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56. T-E Curves for Two-Barrier Sawtooth Superlattices: Influence of Effective
Mass.

Bases are 4.5 nm wide, heights are 0.5 eV. Figure a is for mgf = mg, Figure b is for GaAs-

Al(0.5)Ga(0.5)As superlattice.
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57. T-E Curves for Sawtooth and Step Two-Barrier GaAs-Al(0.5)Ga(0.5)As
Superlattices.

Curve 0: MSB with barriers 2 wide, 5 nm apan, and 0.5 eV high

Curve 1: Sawtooth superlattice with 4.5 nm wide bases.
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58. T-E Curves for Sawtooth and Step Five-Barrier GaAs-Al(0.5)Ga(0.5)As
Superlattices.

Curve 0: Sawtooth superattice with 4.5 nm wide bases.
Curve 1: MSB with barriers 2 wide, 5 nm apant, and 0.5 eV high
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59. J-V Curves for Two-Barrier GaAs-Al{0.5)Ga(0.5)As Sawtooth and Step

Superlattices.
Curve 0: Sawtooth superlattice with 4.5 nm bases, 0.5 eV high
Curve 1: MSB with barriers 2 nm wide, 5 n,mwgprérrt, 0.5 eV high
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60. Deformation of Two-Barrier Sawtooth Superlattice under Applied Electric

Field.
In Figures a, b, and ¢ the applied

sl
0 2

L

-2 4 6 8 10 12 14

z{nm)

16

field strength Fap is 0, 0.02 and 0.05 eV/nm, respectively. At Fap

= 0.05 eV/nm the structure Is a staircase.
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61. T-E Cur\(e for Two-Barrier GaAs—AI(O.S)Ga(O.S)'As Superlattice
Bases are 4.5 nm wide, heights are 0.5 eV. The applied fiekd strength is 0.052 eV/nm (applied
voltage = 0.47 V).
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62. T-E Curves for Two-Barrier Sawtooth Superlattices: Effects of Composition.
Data for GaAs-Al(0.4)Ga(0.6)As and GaAs-Al(0.5)Ga(0.5)As superlattices are shown in Curves 0
and 1 respectively. Bases are 4.5 nm wide.
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63. J-V Curves for Two-Barrler Sawtooth Superlattices: Effects of Composition.
Data for GaAs-Al(0.4)Ga(0.6)As and GaAs-Al(0.5)Ga(0.5)As superlattices are shown in Curves 0
and 1, respectively. Bases are 4.5 nm wide.
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APPENDIX

The tunneling calculations of the present study use the programs in this appendix. All of
the programs are based on the transfer matrix method described in Section 2.B.; their structure
actually differs very little from program to program. These programs are written in VAX FORTRAN,
and are compiled using the G_FLOAT option, which allows computations involving numbers
roughly as large as 10308, This proves necessary in programs calculating resonance spectra and
tunneling current voltage curves for superiattices longer than 10 nm or so.

The transmission resonance programs are: ZIGGURAT; ZIGGEFFMASS; MSB; ALMSB;
SAWTOOTH, and ALSTAIR. To calculate transmission resonance spectra, the incident energy is
varied in small steps in a do-loop. The shape of the potential is determined from input parameters
of barrier composition, number, height and width, and from the applied electric field strength. The
potential is divided into many small steps of constant potential and effective mass. The transfer
matrix, denoted by T in the code, is initialized as the unit matrix. In the main program, the position
zj, wave numbers kj and ki1, and effective masses mj and mj,.1, are calculated at each step.
These values are passed to a subroutine, EFFMASSTEP (or STPTRN if the effective mass is
taken as uniform and equal to mg), where the transfer matrix at the step is computed, multiplied by
the product of the transfer matrices at all preceding steps, and the accumulated T Is returned to
the main program. After this has been done at each step in the superlattice, the total accumulated
transter matrix element T11 Is used to calculate the transmission coefficient (equation 18). This
value is deposited with the corresponding incident energy E in an output file from which T-E plots
are made.

Tunneling current-voltage programs are: JVMSB, JVALMSB, JVSAWTOOTH, and
JVALSTAIR. To calculate J-V curves, a single incident energy is chosen, 0.005 eV in this study.
The applied voltage over the structure is varied within a do-loop in steps of 0.01 V, from 2 V to
zero. inside the do-loop, the operation of the program is very similar to that of the T-E programs:
the potential shape Is calculated from input parameters and divided into steps, the transfer matrix
calculated at each step, inside the subroutines EFFMASSTEP or STPTRN, and the accumulated
transter matrix returned to the main program. After the last step, the tunneling current is calculated
from T11 according to equation 20, and deposited with the corresponding value of V in an output
file for plotting.

The program WELL is used to calculate the bound states in a single quantum well where
the effective mass is uniform and equal to m, The programs for calculating the bound states in
single GaAs-AlxGa(1-x)As quantum wells are ALGAASWELL and STARKMASS. WELL and
ALGAASWELL are used to calculate the bound states under zero applied field, while
STARKMASS is used to find the Stark shift of those states under non-zero, localized electric
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fields. These programs are almost identical to those used to calculate T-E curves for step barriers.
The differences are that the energles are negative, i.e. Vo<E<0; then Jlog10(T11)| (where T11ls
from the total transfer matrix accumulated inside and outside the well) is simply deposited with it's

corresponding energy in an output file.
To calculate the Stark shift in a GaAs-AlxGa(1-x)As quantum well under an extended

electric field, the program AIRYWELL Is used. In this program the Airy function solutions of the
Schroedinger equation inside and outside the well are calculated from the input values of the well
width and depth and applied field strength. The values of x, the argument of the Airy functions,
defined by equation 72, are calculated at the well edges. The Airy functions are obtained from the
IMSL, Incomporated, special function library SFUN/LIBRARY Matching wavefunctlons and
derivatives at the well edges glves the wavelunchon coefficients to the left of (C and D) and inside
(P and Q) the well From these and lrom R S T and U, the raltos of Airy functions evaluated at the
well edges, the conponenls F and E are calculated from the relation

FIE = (CD*(SP)+T-Q/(U*(CD*P+Q)-R*(C/D*S+T))
This Is equivalent to equation 86 in the text. This calculation is done inside a do-loop which varies

the energy in steps edeal to 0.001 times the zero-field well depth plus the applied voltage across
the well. Then Jlog10(F/E)| and the corresponding value of energy are stored in an array. In this

program an NCAR graphics subroutine is used to obtain piots from the data amay.
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SUBROUTINE STPTRN ( E, VL, VR, FK, Z, Tl)

c
c This subroutine computes the accumulated transfer matrix TR
c through a potential step, where the wavenumber changes from AKL
c on the left, to AKR on the right, at position 2.
c

IMPLICIT REAL*8 (A-H, 0-2)

DIMENSION T1(4), T2(4), TR(4), EX(4)

COMPLEX*16 AKL, AKR, Tl1, T2, TR, EX

PSILON = 10E-7

DIFFL = (E - VL)

DIFFR = (E - VR)

IF (ABS(DIFFL) .LT. PSILON) DIFFL = SIGN(PSILON,DIFFL}

IF (ABS(DIFFR) .LT. PSILON) DIFFR = SIGN(PSILON,DIFFR)

AKL = FK*DIFFL

AKL = SQRT (AKL)

AKR = FK*DIFFR

AKR = SQRT (AKR)

EX(1) = (0,1.0) * (AKR - AKL) * 2

EX(2) = (0, -1.0) * (AKR - AKL) * 2

EX(3) = (0, -1.0) * (AKR + AKL) * 2

EX(4) = (0,1.0) * (AKR + AKL) * 2

T2(1) = 0.5 * (1 + AKR/AKL) * EXP(EX(1l))

T2(2) = 0.5 * (1 + AKR/AKL) * EXP(EX(2))

T2(3) = 0.5 * (1 - AKR/AKL) * EXP(EX(3))

T2(4) = 0.5 * (1 - AKR/AKL) * EXP(EX(4))

TR(1) = T1(1)*T2(1l) + T1(3)*T2(4)

TR(2) = T1(4)*T2(3) + T1(2)*T2(2)

TR(3) = T1(1)*T2(3) + T1(3)*T2(2)

TR(4) = T1(4)*T2(1) + T1(2)*T2 (4)

Tl1(l) = TR(1l)

T1(2) = TR(2)

T1(3) = TR(3)

T1(4) = TR(4)
400 RETURN

END
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SUBROUTINE EFFMASSTEP ( E, VL, VR, ML, MR, FK, Z, Tl)

c
c This subroutine computes the accumulated transfer matrix TR
c through a potential step, where the wavenumber changes from AKL
c on the left, to AKR on the right, at position Z.
c

IMPLICIT REAL*8 (A-H, 0-2)

DIMENSION T1(4), T2(4), TR(4), EX(4)

COMPLEX*16 AKL, AKR, T1l, T2, TR, EX

REAL*8 ML, MR

PSILON = 10E-7

DIFFL = (E - VL)

DIFFR = (E - VR)

IF (ABS(DIFFL) .LT. PSILON) DIFFL = SIGN(PSILON,DIFFL)

IF (ABS(DIFFR) .LT. PSILON) DIFFR = SIGN(PSILON,DIFFR)

AKL = FK * ML * DIFFL

AKL = SQRT (AKL)

AKR = FK * MR * DIFFR

AKR = SQRT (AKR)

EX(1) = (0,1.0) * (AKR - AKL) * Z

EX(2) = (0, -1.0) * (AKR - AKL) * 2

EX(3) = (0, -1.0) * (AKR + AKL) * 2Z

EX(4) = (0,1.0) * (AKR + AKL) * Z

RAT = ML / MR

RAT = SQRT (RAT) _

T2(1) = 0.5 * RAT * (1 + AKR/AKL) * EXP(EX({1l))

T2(2) = 0.5 * RAT * (1 + AKR/AKL) * EXP(EX(2))

T2(3) = 0.5 * RAT * (1 - AKR/AKL) * EXP(EX(3))

T2(4) = 0.5 * RAT * (1 - AKR/AKL) * EXP(EX(4))

TR(1) = T1(1)*T2(1) + T1(3)*T2(4)

TR(2) = T1(4)*T2(3) + T1(2)*T2(2)

TR(3) = T1(1)*T2(3) + T1(3)*T2(2)

TR(4) = T1(4)*T2(1) + T1(2)*T2(4)

T1(1l) = TR(1)

T1(2) = TR(2)

T1(3) = TR(3)

T1(4) = TR(4)
400 RETURN

END
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PROGRAM ZIGGURAT
This program finds the transmission coefficient T for an
incident plane wave of energy E on an asymmetric step potential
where the potential gradient (V1-V2) is broken into a series of
any desired number of steps NST. The initial and final
potential values V0 and VF are arbitrary.

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION T1 (4)

COMPLEX*16 T1

FK = 26.2451

PRINT*, 'ENTER V1 IN eV (V1 is the barrier height)®
READ*, V1

PRINT*, 'ENTER TOTAL BARRIER WIDTH BW IN nm'

READ*, BW

PRINT*, 'ENTER THE APPLIED FIELD STRENGTH F IN eV/nm'
READ*, F

PRINT*, 'ENTER DESIRED NUMBER OF STEPS NST'

READ*, NST

20 = 0

v0 =0

DLTAV = F * BW

V2 = V1 - DLTAV

VF = V0 - DLTAV

DLTAV = DLTAV / NST

DLTAZ = BW / NST

TYPE*, DLTAZ

PRINT 10, 'E(eV)', 'T!

FORMAT ( //,1X, A7, 1X, A5, 1X, / 1%, 20('=') )
OPEN (UNIT = 16, FILE = ‘'ZIGGURAT.DAT', STATUS = 'NEW')

Here starts the energy loop

DO 20 NE = 1, 2000
EDIV = V1 / 2000

Z =20

E=1.5 % Vvl - (NE * EDIV)
T1(l) = (1.0, 0.0 )

Ti(2) = (1.0, 0.0 )

T1(3) = ( 0.0, 0.0 )

Tl1(4) = ( 0.0, 0.0 )

CALL STPTRN(E,VO0,V1,FK,2,T1)

This takes care of the leading edge of the barrier.Now a loop
inside the barrier will handle the potential drop V1-v2,.

IF (DLTAV .EQ. 0) THEN
Z = 20 + BW
VL = V2
VR = VF
CALL STPTRN(E,VL,VR,FK, 2, T1)
GO TO 29
END IF
DO I =1, (NST - 1)
Z = 2 + DLTAZ
VL = V1 - (I - 1) * DLTAV
VR = VL - DLTAV
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CALL STPTRN(E,VL,VR,FK,2,T1)

END DO
c
o Now the transfer matrix through the trailing edge of the barrier
c is found and multiplied by the accumulated T-matrix.
c
28 VL = VR
VR = VF
CALL STPTRN(E,VL,VR,FK,2,Tl)
C
C the control passes to statement 29 from the block IF
Cc above which handles the case of zero-field
C
29 T = ABS(T1(1))**2
T=1.0/T
PRINT 30, E,T
30 FORMAT (F7.2,E12.3)
WRITE (16,300) E, T
300 FORMAT (2E15.7)
20 CONTINUE
21 END
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PROGRAM ZIGGEFFMASS

This program finds the transmission coefficient T for an
incident plane wave of energy E on an asymmetric step potential
where the potential gradient (V1-V2) is broken into a series of
any desired number of steps NST. The applied field F is
arbitrary and determines the barrier shape. The effective mass
takes an abrupt jump at the edges of the barrier from mx to my,
determined by the aluminum contents x and y put in by the
operator. This program has the output file ZIGGEFFMASS.DAT.

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 M1, M2

DIMENSION T1 (4)

COMPLEX*16 T1

FK = 26.2451

PRINT*, 'ENTER BARRIER HEIGHT V1 IN eV'

READ*, V1

PRINT*, 'ENTER THE APPLIED FIELD STRENGTH F IN eV/nm'
READ*, F

PRINT*, 'ENTER TOTAL BARRIER WIDTH BW IN nm'
READ*, BW

PRINT*, 'ENTER DESIRED NUMBER OF STEPS NST'

READ*, NST

PRINT*, 'ENTER Al CONTENT X OF NARROW GAP MATERIAL'
READ*, X

PRINT*, '"ENTER Al CONTENT Y OF WIDE GAP MATERIAL'

READ*, Y

20 =0

Vo = 0

VAP = F * BW

V2 = V1 - VAP

VF = V0 - VAP

Ml = 0.0636 + 0.0552 * X + 0.0092 * X**2

M2 = 0.0636 + 0.0552 * ¥ + 0.0092 * y*x*2

PRINT*, 'THIS FIELD RESULTS IN V2=',V2, 'AND VF=',VF
DLTAV = (V1 - V2)

IF (NST.EQ.1) GO TO 6

DLTAV = DLTAV/ (NST-1)

TYPE*, DLTAV

DLTAZ = BW/NST

TYPE*, DLTAZ

OPEN (UNIT = 18, FILE = 'ZIGGEFFMASS.DAT', STATUS = 'NEW')
PRINT 10, 'E(eV)', 'T'

FORMAT ( //,1X, A7, 1X, A5, 1X, / 1X, 20('=') )

Here starts the energy loop

DO 20 NE = 1, 2000
EDIV = Vv1/2000
2 =20
E=1.5*
T1(1) {
T1(2) (
T1(3) (
T1(4) = (
CALL EFFMA

NE EDIV)

-

1w

(
0
0
0.
0
(

OO OO

*
’ )
' )
. )
' )
EP(E,V0,V1,6M1,M2,FK, Z,T1)
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Z = 2 + DLTAZ

c
c This takes care of the leading edge of the barrier.Now a loop
c inside the barrier will handle the potential drop V1-V2.
c
IF (DLTAV .EQ. 0) THEN
zZ =20 + BW
VL = V2
VR = VF
CALL EFFMASSTEP(E,VL,VR,M2,M1,FK, 2, Tl)
GO TO 29
END IF
DO 25 V1 = V1,V2+DLTAV, - (DLTAV)
VL = VI
VR = VI - DLTAV
CALL EFFMASSTEP(E,V1,VR,M2,M2,FK,2,T1)
2 = 2 + DLTAZ
25 CONTINUE
c
c Now the transfer matrix through the trailing edge of the barrier
c is found and multiplied by the accumulated T-matrix.
c
28 VL = V2
VR = VF
CALL EFFMASSTEP (E,VL,VR,M2,M1,FK,Z,T1)
C
o the control passes to statement 29 from the block IF
ol above which handles the case of zero-field
C
29 T = ABS(T1(1l))**2
T =1.0/T
PRINT 30, E,T
30 FORMAT (F7.2,E12.3)
WRITE (18,300) E, T
300 FORMAT (2E15.6)
20 CONTINUE
21 END
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PROGRAM MSB
The program ALMSB finds the transmission coefficient T as
a function of incident plane wave energy E for multiple
step potential barriers of height V1, width BW, separation
DSEP, and total number NTEETH for AlGaAs-GaAs. Applied field
F = 0. Effective mass varies in wells and barriers. Data are
written into output file MSB.DAT

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION T1 (4)
COMPLEX*16 T1
FK = 26.2451
vo 0.0
Z0 = 0.0
PRINT*, 'ENTER BARRIER HEIGHT V1 IN eV'
READ*, V1
PRINT*, 'ENTER BARRIER WIDTH, BW, AND SEPARATION DSEP IN nm.'
READ*, BW, DSEP
PRINT*, 'HOW MANY BARRIERS ARE THERE ? (NTEETH)'
READ*, NTEETH
PRINT 10,'E(eV)','T'
FORMAT (//,1X,A7,1X,A5,1X,/,1X,20('="))
OPEN ( UNIT = 11, FILE = ‘ALMSB.DAT’, STATUS ='NEW')
DO 20 NE = 1,10000
EDIV = V1 / 10000

Z =20

E = (1.10 * V1) - ( NE * EDIV)
T1(1l) = (1.0,0.0)

T1(2) = (1.0,0.0)

T1(3) = (0.0,0.0)

T1(4) = (0.0,0.0)

PERIOD = BW + DSEP
DO 30 NST = 1, NTEETH
CALL STPTRN(E,V0,V1,FK,Z,T1)
Z =72 + BW
CALL STPTRN(E,V1,V0,FK,Z,T1)
Z = NST * PERIOD + 20
CONTINUE

END TEETH LOOP

T = ABS(T1(1))**2

T 1.0/T

T LOG10(T)

WRITE (11,300) E,T

FORMAT (2E15.7)

PRINT 35, E, T

FORMAT ( 2E12.3 )
CONTINUE

END OF E-LOOP

END
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PROGRAM ALMSB
The program ALMSB finds the transmission coefficient T as
a function of incident plane wave energy E for multiple
step potential barriers of height V1, width BW, separation
DSEP, and total number NTEETH for AlGaAs-GaAs. Applied field
F = (. Effective mass varies in wells and barriers.

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 MX, MY
DIMENSION T1 (4)
COMPLEX*16 T1
FK = 26.2451
v0 0.0
20 = 0.0
PRINT*, ‘ENTER BARRIER HEIGHT V1 IN eV'
READ*, V1
PRINT*, 'ENTER BARRIER WIDTH, BW, AND SEPARATION DSEP IN nm.'
READ*, BW, DSEP
PRINT*, 'HOW MANY BARRIERS ARE THERE ? (NTEETH)'
READ*, NTEETH
PRINT*, 'Al CONCENTRATION IN BARRIERS, X,?'
READ*, X
PRINT*, 'Al CONCENTRATION IN WELLS, Y,?’'
READ*, Y
MX = 0.0636 + 0.0552 * X + (0.0092 * X**2)
MY = 0.0636 + 0.0552 * Y + (0.0092 * Yy**2)
PRINT 10, 'E(eV)','T'
FORMAT (//,1%X,A7,1X,A5,1%,/,1X,20('="))
OPEN ( UNIT = 11, FILE = 'ALMSB.DAT', STATUS ='NEW')
DO 20 NE = 1,10000
EDIV = Vv1/10000
Z =120
E = (1.10 * V1) - ( NE * EDIV)
Ti(l) = (1.0,0.0)

Ti(2) = (1.0,0.0)
T1(3) = (0.0,0.0)
T1(4) = (0.0,0.0)

PERIOD = BW + DSEP

DO 30 NST = 1, NTEETH
CALL EFFMASSTEP (E,V0,V1,MY,MX,FK,2,T1)
2 =2 + BW
CALL EFFMASSTEP (E,V1,V0,MX,MY,FK,Z,T1)
Z = NST * PERIOD + Z0

CONTINUE

END TEETH LOOP
T = ABS(T1(1))**2
T =1.0/T
T = LOG10(T)
WRITE (11,300) E,T
FORMAT (2E15.7)
PRINT 35, E, T
FORMAT ( 2E12.3 )
CONTINUE

END OF E-LOOP
END
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PROGRAM SAWTOOTH

This program calculates the quantum mechanical transmission
coefficient through a series of sawtooth potential barriers
under an applied electic field resulting in a voltage drop
over the length of the entire barrier of VAP. This program
uses the subroutine STPTRN. A data file of T versus E is
generated in the output file SAWTOOTH.DAT.

o000

IMPLICIT REAL*8 (A-H, 0-2)

DIMENSION T1 (4)

COMPLEX*16 T1

FK = 26.2451

Z00 = 0

voo = 0

PRINT*, 'HOW MANY SAWTEETH, AND HOW WIDE ARE THEIR BASES IN nm ?'
READ*, NTH, BSE

PRINT*, 'HOW HIGH IS THE TRAILING EDGE OF EACH TOOTH (eV)?'
READ*, V10

EDIV = V10 / 2000

PRINT*, 'ENTER THE APPLIED FIELD IN eV/nm'

READ*, F

VAP = F * BSE * NTH

IF (VAP .EQ. V10) VAP = (VAP + EDIV / 2)

NST = S50 + NINT(ABS((-(VAP / NTH) + V10) / 0.01))

DLTAZ = BSE / NST

DLTAV = (-(VAP / NTH) + V10) / NST

PRINT 10, ‘'E(eV)', 'T'

10 FORMAT (//, 1X, A7, 1X, A5, 1X, /, 1X, 20('='))
OPEN(UNIT = 55, FILE = 'SAWTOOTH.DAT', STATUS = 'NEW')
DO NE = 1, 2000

E=1.10 * V10 - (NE * EDIV)
T1(1) = (1.0,0.0)
T1(2) = (1.0,0.0)
T1(3) {(0.0,0.0)
T1 (4) (0.0,0.0)
DO NT 1, NTH
V0 = V00 - (VAP / NTH) * (NT - 1)
Z = 200 + (NT - 1) * BSE
DO I = 1, NST
VL = V0 + (I - 1) * DLTAV
VR = VL + DLTAV
CALL STPTRN(E, VL, VR, FK, Z, Tl)
Z = 7 + DLTAZ
END DO
VL = VR
VR = V00 - (VAP / NTH) * NT
CALL STPTRN(E, VL, VR, FK, Z, T1)
END DO
T = ABS(T1(1))**2
T = (1.0 / T)
T LOG10(T)
PRINT 100, E, T
100 FORMAT (F7.2, E12.4)
WRITE (55,200) E,T
200 FORMAT (2E15.8)
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END DO

END
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PROGRAM ALSTAIR

This program calculates the quantum mechanical transmission
coefficient through a series of sawtooth potential barriers
under an applied electic field resulting in a voltage drop
over the length of the entire barrier of VAP. This program
uses the subroutine EFFMASSTEP, It takes into

account the changes in effective mass of the electron in each
layer in the superlattice structure. it is intended for use
in the alas-gaas system. (compare to esaki-tsu)

IMPLICIT REAL*8 (A-H, 0-%)
DIMENSION T1(4)
COMPLEX*16 T1
REAL*8 MMIN,MMAX, ML, MR
FK = 26.2451
V00 = 0
200 = 0
PRINT*, 'HOW MANY SAWTEETH, AND HOW WIDE ARE THEIR BASES IN nm ?'
READ*, NTH, BSE
PRINT*, 'HOW HIGH IS THE TRAILING EDGE OF EACH TOOTH (eV)?'
READ*, V10
EDIV = V10 / 2000
PRINT*, 'WHAT IS THE APPLIED FIELD F? (IN eV/nm)'
READ*, F
VAP = F * BSE * NTH
IF (VAP .EQ. V10) VAP = (VAP + EDIV / 2)
NST = 50 + NINT(ABS((-(VAP / NTH) + Vv10)/0.01))
DLTAZ BSE / NST
DLTAV (—-(VAP / NTH) + V10) / NST
PRINT*, '"WHAT IS THE MAX Al CONCENTRATION'
PRINT*, 'ANYWHERE IN THE STRUCTURE?'
READ*, XMAX
MMAX = 0.0636 + 0.0552 * XMAX + (0.0092 * XMAX**2)
PRINT*, "WHAT IS THE MIN Al CONCENTRATION'
PRINT*, 'ANYWHERE IN THE STRUCTURE?'
READ*, XMIN
MMIN = 0.0636 + 0.0552 * XMIN + (0.0092 * XMIN**2)
DLTAAL = (XMAX - XMIN) / NST
PRINT 10, 'E(eV)', '"LOG10(T)'
FORMAT (//, 1X, A7, 1X, AlS, 1x, /, 1X, 24('='))
OPEN (UNIT = 59, FILE = 'ALSTAIR.DAT', STATUS = 'NEW')
DO NE = 1, 2000
E=1.1 * V10 - NE * EDIV

Ti(l) = (1.0,0.0)
T1(2) = (1.0,0.0)
T1{(3) = (0.0,0.0)
T1{(4) = (0.0,0.0)
DO NT = 1, NTH
V0 = V00 - (VAP / NTH) * (NT - 1)

Z = 200 + (NT - 1) * BSE
DO I =1, NST

VL = V0O + (I - 1) * DLTAV

VR = VL + DLTAV

XL = XMIN + (I - 1) * DLTAAL

ML = 0.0636 + 0.0552 * XL + (0.0092 * XL**2)
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¥R = XL + DLTAAL

MR = 0.0636 + 0.0552 * XR + (0.0092 * XR**2)
CALL EFFMASSTEP( E, VL, VR, ML, MR, FK, 2, T1)
% = 2 + DLTAZ

END DO
Z = 200 + NT * BSE

VL = VR
VR = V00 - (VAP / NTH) * NT
CALL EFFMASSTEP (E, VL, VR, MMAX, MMIN, FK, Z, T1)

END DO

T = ABS(T1(1))**2
T= (1.0/T)

T = LOG10(T)

PRINT 100, E, T
FORMAT (F7.3, E12.4)
WRITE (59,200) E, T
FORMAT (2E15.8)

END
END

DO
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PROGRAM JVMSB

This program calculates the quantum mechanical tunneling current
through a series of step potential barriers under an applied
electric field resulting in a voltage drop of VAP over the length
of the array. It assumes uniform effective mass of mo throughout
the structure.Data files of LOG10 (Tunneling current) v.s. applied
voltage are written into the output file is JVMSB.DAT

QOO000000a0

IMPLICIT REAL*8 (A-H, 0-2Z)
DIMENSION T1 (4)

COMPLEX*16 T1, AKI, AKT
FK = 26.2451

voo = 0.0
20 = 0.0
E = 0.005

PRINT*, 'ENTER THE NUMBER OF BARRIERS'
READ*, NBAR
PRINT*, 'ENTER THE BARRIER HEIGHTS (eV), WIDTHS (nm),
+ AND SEPARATIONS (nm)'’'
READ*, V10, BW, DSEP
NPER = (NBAR - 1)
PER = BW + DSEP
PRINT 10, 'VAP(eV)', 'LOG10 (TUNCUR)'
10 FORMAT ( //,A9,1X,A15,1X,/ 1X,24('~"'))
OPEN (UNIT = 89, FILE = 'JVMSB.DAT', STATUS = 'NEW')

C
c Here's the voltage loop
C
DO NV =1, 200
vDIV = 0.01
VAP = 2.0 - NV * VDIV
F = VAP / (NPER * PER + BW)
NST = 25 + IDNINT(F * BW / 0.001)
NWST = NST * (DSEP / BW)
DLTAV = (F * BW) / NST
DLTAZ = BW / NST
WDLTAV = (F * DSEP) / NWST
WDLTAZ = DSEP / NWST
T1(1) = (1.0,0.0)
Ti(2) = (1.0,0.0)
T1(3) = (0.0,0.0)
T1(4) = (0.0,0.0)
c
C Here's the period loop
c
DO N = 1, NPER
Z =20+ (N - 1) * PER
VL = V0O - F * (N - 1) * PER
VR = V10 - F * (N - 1) * PER
CALL STPTRN(E, VL, VR, FK, Z, T1)
c
lod Here's the top edge of the barrier loop
(o

DO I =1, (NST - 1)
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Z = Z + DLTAZ
VL = V10 - (F * (N - 1) * PER) - (I - 1) * DLTAV
VR = VL - DLTAV
CALL STPTRN(E, VL, VR, FK, Z, TIl)
END DO

Here's the trailing edge of the barrier

Z =20+ ((N-1) *¥ PER) + BW

VL = V10 - F * ((N - 1) * PER + BW) + DLTAV
VR = V00 - F * ((N - 1) * PER + BW)

CALL STPTRN(E, VL, VR, FK, 2, Tl)

Here's the well loop

DO J =1, (NWST - 1)
Z = 2 + WDLTAZ
VL = V00 - F * ((N - 1) * PER + BW) - (J - 1) * WDLTAV
VR = VL - WDLTAV
CALL STPTRN(E, VL, VR, FK, Z, Tl)
END DO
END DO

The following are the computations for the last barrier

2 = NPER * PER
VL = VR S
VR = V10 - (F * NPER * PER)
CALL STPTRN(E, VL, VR, FK, Z, T1)
DO M =1, (NST - 1)
Z = Z + DLTAZ
VL = V10 - (F * NPER * PER) - (M - 1) * DLTAV
VR = VL - DLTAV
CALL STPTRN(E, VL, VR, FK, Z, T1)
END DO
2 = NPER * PER + BW
VL = V10 - F * ((NPER * PER) + BW) + DLTAV
VR = V00 - F * ((NPER * PER) + BW)
CALL STPTRN(E, VL, VR, FK, Z, Tl)

This takes care of all the barriers

AKI = FK * E
AKI = SQRT (AKI)
AKT = FK * (E - VR)
AKT = SQRT (AKT)
T = ABS(T1(1))**2
T=1.0/T
TUNCUR = (AKT / AKI) * T
TUNCUR = LOG10 (TUNCUR)
PRINT 20, VAP, TUNCUR
FORMAT ( F7.3, E12.4)
WRITE (89,30) VAP, TUNCUR
FORMAT (2E15.8)

END DO

END
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PROGRAM JVALMSB

This program calculates the quantum mechanical tunneling current
through a series of step potential barriers under an applied
electric field resulting in a voltage drop of VAP over the

length of the array.

This program uses the subroutine EFFMASSTEP. It is intended for
use with GaAs-Al (x)Ga(l-x)As superlattices, taking account of the
effective mass of the electron in each layer of the superlattice.
Data files of LOG10(Tunneling current) vs. applied voltage are
written into the ocutput file JVALMSB.DAT

QOO0 00000000

IMPLICIT REAL*8 (A-H, 0-2Z)
REAL*8 MX, MY, MI, MT
DIMENSION T1 (4}

COMPLEX*16 T1, AKI, AKT
FK = 26,2451

Vo0 = 0.0
20 = 0.0
E = 0.005

PRINT*, '"ENTER THE NUMBER OF BARRIERS'
READ*, NBAR
PRINT*, "ENTER THE BARRIER HEIGHTS (eV), WIDTHS (nm)
+ AND SEPARATIONS (nm)’'
READ*, V10, BW, DSEP
PRINT*, 'Remember, the Al concentration in the barrier is
+ higher than in the well!!!!:?
PRINT*, '"WHAT IS THE Al CONCENTRATION IN THE BARRIER, XMAX?'
READ*, XMAX
PRINT*, '"WHAT IS THE Al CONCENTRATION IN THE WELL, XMIN?'
READ*, XMIN
MX = 0.0636 + 0.0552 * X + 0.0092 * X**2
MY = 0.0636 + 0.0552 * Y + 0.0092 * y*x*2
MI = MY
MT = MY
NPER = (NBAR - 1)
PER = BW + DSEP
PRINT 10, 'VAP(eV)', 'LOG10 (TUNCUR)'
10 FORMAT ( //,A9,1X,Al15,1X,/ 1X,24('~"))
OPEN (UNIT = 86, FILE = "JVALMSB.DAT', STATUS = 'NEW')
C
C Here's the voltage loop
C
DO NV = 1, 200
VDIV = 0.01
VAP = 2.0 - NV * VDIV
F = VAP / (NPER * PER + BW)
NST = 25 + IDNINT(F * BW / 0.001)
NWST = NST * (DSEP / BW)
DLTAV = (F * BW) / NST
DLTAZ = BW / NST
WDLTAV = (F * DSEP) / NWST
WDLTAZ = DSEP / NWST
T1(l) = (1.0,0.0)
Ti(2) = (1.0,0.0)
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T1(3) = (0.0,0.0)
T1(4) = 0
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Here's the period loop

DO N = 1, NPER
Z =20 + (N - 1) * PER
VL = V00 - F * (N - 1) * PER
VR = V10 - F * (N - 1) * PER
CALL EFFMASSTEP(E, VL, VR, MY, MX, FK, Z, Tl)

Here's the top edge of the barrier loop

DO I =1, (NST - 1)
Z = Z + DLTAZ
VL = V10 - (F * (N - 1) * PER) - (I - 1) * DLTAV
VR = VL - DLTAV
CALL EFFMASSTEP(E, VL, VR, MX, MX, FK, Z, T1)
END DO

Here's the trailing edge of the barrier

7z =20 + ((N - 1) * PER) + BW

VL = V10 - F * {(N - 1) * PER + BW) + DLTAV
VR = VOO0 - F * ((N - 1) * PER + BW)

CALL EFFMASSTEP(E, VL, VR, MX, MY, FK, 2, Tl)

Here's the well loop

DO J = 1, (NWST - 1)
2z = 2 + WDLTAZ
VL = VOO - F * ((N - 1) * PER + BW) - (J - 1) * WDLTAV
VR = VL - WDLTAV
CALL EFFMASSTEP (E, VL, VR, MY, MY, FK, Z, T1)
END DO
END DO

The following are the computations for the last barrier

7z = NPER * PER
VL = VR
VR = V10 - (F * NPER * PER)
CALL EFFMASSTEP(E, VL, VR, MY, MX, FK, 2, Tl)
DO M =1, (NST - 1)
7z = Z + DLTAZ
VL = V10 - (F * NPER * PER) - (M - 1) * DLTAV
VR = VL - DLTAV
CALL EFFMASSTEP(E, VL, VR, MX, MX, FK, Z, Tl)
END DO
7z = NPER * PER + BW
VL = V10 - F * ((NPER * PER) + BW) + DLTAV
VR = V00 - F * ((NPER * PER) + BW)
CALL EFFMASSTEP(E, VL, VR, MX, MY, FK, 2, Tl)

This takes care of all the barriers

FK * MI * E
SQRT (AKI)

AKI
AKI
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AKT = FK * MT * (E - VR)
AKT = SQRT (AKT)
T = ABS(T1(1))=**2
T=1.0/T
TUNCUR = (AKT / AKI) * (MI / MT) * T
TUNCUR = LOG10 (TUNCUR)
PRINT 20, VAP, TUNCUR
FORMAT ( F7.3, E12.4)
WRITE (86,30) VAP, TUNCUR
FORMAT (2E15.8)

END DO

END
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PROGRAM JVSAWTOOTH

This program calculates the quantum mechanical tunneling
current through a series of sawtooth potential barriers

under an applied voltage VAP. It uses the subroutine STPTRN.
Data files of LOG10(tunneling current) versus applied voltage
VAP are created under the filename JVSAWTOOTH.DAT

IMPLICIT REAL*8 (A-H, 0-Z)

DIMENSION T1 (4)

COMPLEX*16 T1, AKI, AKT

FK = 26.2451

voo = 0

200 = 0

E = 0.005

PRINT*, 'HOW MANY SAWTEETH, AND HOW WIDE ARE THEIR BASES IN nm ?'
READ*, NTH, BSE

PRINT*, 'HOW HIGH IS THE TRAILING EDGE OF EACH TOOTH (eV)?'
READ*, V10

THIS TAKES CARE OF THE INPUT STATEMENTS

PRINT 10, 'VAP (V)', 'LOG10 (TUNCUR)'
FORMAT (//, 1X, A9, 1X, Al5, 1X, /, 1X, 24('~'))
OPEN (UNIT = 51, FILE = 'JVSAWTOOTH.DAT', STATUS = 'NEW')
DO NV = 1, 200
VDIV = 0.01
VAP = 2.0 - VDIV * NV«
IF (VAP .EQ. V10) VAP = VAP + VDIV / 2
NST = 25 + NINT (ABS((-(VAP / NTH) + V10) / 0.001))
DLTAZ = BSE / NST
DLTAV = (-(VAP / NTH) + V10) / NST

T1(l) = (1.0,0.0)
T1(2) = (1.0,0.0)
T1(3) = (0.0,0.0)
T1(4) = (0.0,0.0)
DO NT = 1, NTH
V0 = V00 - (VAP / NTH) * (NT - 1)

Z = 200 + (NT - 1) * BSE
DO I = 1, NST
VL = VO + (I - 1) * DLTAV
VR = VL + DLTAV
CALL STPTRN(E, VL, VR, FK, Z, T1)
Z = Z + DLTAZ
END DO
Z = 200 + NT * BSE
VL = VR
VR = VOO - (VAP / NTH) * NT
CALL STPTRN(E, VL, VR, FK, Z, T1)
END DO
AKI = FK * E
AKI = SQRT (AKI)
AKT = FK * (E - VR)
AKT = SQRT (AKT)
T = ABS(T1(1))**2
T= (1.0 / T)
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TUNCUR = (AKT / AKI) * T
TUNCUR = LOG10 (TUNCUR)
PRINT 100, VAP, TUNCUR

100 FORMAT (F7.3, E12.4)
WRITE (51,200) VAP, TUNCUR
200 FORMAT (2E15.8)
END DO
END
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PROGRAM JVALSTAIR

This program calculates the quantum mechanical tunneling
current through a series of sawtooth potential barriers

under an applied electic field resulting in a voltage drop
over the length of the entire barrier of vap. This program
uses the subroutine EFFMASSTEP. It takes into

account the changes in effective mass of the electron in each
layer in the superlattice structure. It is intended for use
on GaAs-Al({x)Ga(l-x)As sawtooth superlattices.

Data files of LOG10(tunneling current) versus applied voltage
VAP are in output file JVALSTAIR.DAT

IMPLICIT REAL*8 (A-H, 0-2)
REAL*8 M1,M2,ML,MR,MI,MT
DIMENSION T1 (4)

COMPLEX*16 T1, AKI, AKT
FK = 26.2451

V0o = 0
200 = 0
E = 0.005

PRINT*, 'HOW MANY SAWTEETH, AND HOW WIDE ARE THEIR BASES IN nm 2°
READ*, NTH, BSE
PRINT*, 'HOW HIGH IS THE TRAILING EDGE OF EACH TOOTH (eV)?'
READ*, V10
PRINT*, '"WHAT IS THE MAX Al CONCENTRATION'
PRINT*, 'ANYWHERE IN THE STRUCTURE?'
READ*, XMAX
PRINT*, '"WHAT IS THE MIN Al CONCENTRATION'
PRINT*, 'ANYWHERE IN THE STRUCTURE?"'
READ*, XMIN
Ml = 0.0636 + (0.0552 * XMAX) + (0.0092 * XMAX**2)
M2 = 0.0636 + (0.0552 * XMIN) + (0.0092 * XMIN**2)
MI = M2
MT = M2
PRINT 10, 'VAP(eV)', 'LOG10{TUNCUR)"
FORMAT (//, 1X, A9, 1X, Al5, 1X, /, 1X, 24('="))
OPEN (UNIT = 60, FILE = 'JVALSTAIR.DAT', STATUS = 'NEW')
DO NV = 1, 200
VDIV = 0,01
VAP = 2.0 - VDIV * NV
IF (VAP .EQ. V10) VAP = (VAP + VDIV / 2)

NST = 25 + NINT(ABS((- (VAP / NTH) + V10)/0.001))
DLTAZ = BSE / NST

DLTAV = (-(VAP / NTH) + V10) / NST

DLTAAL = (XMAX - XMIN) / NST

T1(1l) = (1.0,0.0)

T1(2) = (1.0,0.0)

T1(3) = (0.0,0.0)

T1(4) = (0.0,0.0)

DO NT = 1, NTH
VO = V0O - (VAP / NTH) * (NT - 1)
Z = 200 + (NT - 1) * BSE
DO I = 1, NST
VL = V0 + (I - 1) * DLTAV
VR = VL + DLTAV
XL = XMIN + (I - 1) * DLTAAL
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ML = 0.0636 + 0.0552 * XL + (0.0092 * XL**2)
XR = XL + DLTAAL
MR = 0.0636 + 0.0552 * XR + (0.0092 * XR**2)
CALL EFFMASSTEP( E, VL, VR, ML, MR, FK, 2z, Tl)
Z = Z + DLTAZ
END DO
Z = 200 + NT * BSE
VL = VR
VR = V00 - (VAP / NTH) * NT
CALL EFFMASSTEP(E, VL, VR, MR, M2, FK, Z, Tl)
END DO
AKI = FK * MI * E
AKI = SORT (AKI)
AKT = FK * MT * (E - VR)
AKT = SQRT (AKT)
T = ABS(T1(1))**2
T= (1.0 / T)
TUNCUR = (AKT / AKI) * (MI / MT) * T
TUNCUR = LOG10 (TUNCUR)
PRINT 100, VAP, TUNCUR

100 FORMAT (F7.3, El12.4)
WRITE (60,200) VAP, TUNCUR
200 FORMAT (2E15.8)
END DO
END

154



oNoNoNoNoNeNe!

10

300

35
20

PROGRAM WELL

This program finds the total transfer matrix element M1l

for a single quantum well of depth V1 and width a, as a
function of the energy below the top of the well. A constant
effective mass m* = mo is assumed. Data files of LOG10(M11)
versus E are generated.

IMPLICIT REAL*8 (a-h,o0-z)
REAL*8 MI1
DIMENSION T1 (4)
COMPLEX*16 T1
FK = 26.2451
z0 = 0
vo = 0
PRINT*, 'ENTER WELL DEPTH V1 IN eV (ENTER ABS VALUE)'
READ*, V1
PRINT*, 'ENTER WELL WIDTH, a, IN NANOMETERS'
READ*, A
OPEN (UNIT = 80, FILE = 'WELL', STATUS = 'NEW')
PRINT 10, 'E(eV) "', 'LOG10 (M11)"
FORMAT (//,1X,A7,1X,Al11,1X,/,1X,24('="))
Vi = -Vl
EDIV = V1 / 2000
DO 20 NE = 1,2000
E = NE * EDIV
Z = 20
T1(1) = (1.0,0.0)
T1(2) = (1.0,0.0)
Ti1(3) = (0.0,0.0)
T1(4) = {(0.0,0.0)
CALL STPTRN(E,V0,V1,FK,Z,T1)
Z =2 + A
CALL STPTRN(E,V1,V0,FK,Z,T1)
M1l = ABS(T1(1))
M1l = LOG10 (M11)
WRITE (80,300) E, M1l
FORMAT (2E15.6)
PRINT 35, E, M1l
FORMAT (F7.2, E12.3)
CONTINUE

END OF E-LOOP

END
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PROGRAM ALGAASWELL

This program calculates the total transfer matrix element

M1l for a single Al (x)Ga(l-x)As-Al (y)Ga(l-y)As quantum well

of depth V1 and width a, as a function of the energy below the
top of the well. The input well depth must be in accord with
the values used for x and y, where x and y are the aluminum
concentrations outside and inside the well, respectively. Data
files of LOG10(M11l) versus E are generated.

a0 aanan

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 M1, M2, M1l
DIMENSION T1 (4)
COMPLEX*16 T1
FK = 26.2451
20 = 0
Vo =0
PRINT*, 'ENTER WELL DEPTH V1 IN eV (ENTER ABS VALUE)'
READ*, V1
PRINT*, 'ENTER WELL WIDTH, a, IN NANOMETERS'
READ*, A
PRINT*, 'ENTER MIN AL CONTENT, y, (IN THE WELL)'
READ*, XMIN
PRINT*, '"ENTER MAX AL CONTENT, X, (OUTSIDE THE WELL)'
READ*, XMAX
Ml = 0.0636 + (0.0552 * XMAX) + (0.0092 * XMAX**2)
M2 = 0.0636 + (0.0552 * XMIN) + (0.0092 * XMIN**2)
OPEN (UNIT = 73, FILE = 'ALGAASWELL', STATUS = 'NEW')
PRINT 10, 'E{eV)"', 'LOG10(M11)’
10 FORMAT (//,1X,A7,1X,Al1,1X,/,1X,24('="))
vl = -Vl
EDIV = V1 / 2000
DO 20 NE = 1,2000
E = NE * EDIV
Z = 20
T1(1)

(1.0,0.0)
T1(2) (1.0,0.0)
T1(3) (0.0,0.0)
T1(4) = (0.0,0.0)
CALL EFFMASSTEP (E,V0,V1,M1,M2,FK,Z,T1)
2 =2 +A
CALL EFFMASSTEP(E,V1,V0,M2,M1,FK,2Z,T1)
M1l = ABS(T1(1l))
M1l = LOG10 (M11l)
WRITE (73,300) E,M11
300 FORMAT (2E15.6)
PRINT 35, E, M1l
35 FORMAT (F7.2, E12.3)
20 CONTINUE

C END OF E-LOOP

END
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PROGRAM STARKMASS

This program calculates the total transfer matrix element

M1l in a single Al (x)Ga(l-x)As-Al(y)Ga(l-y)As quantum well,
of depth V1 and width a as a function of the energy below the
top of the well and the applied field F. This program assumes
the applied field is restricted to the area of the well.

The input value of V1 must be compatible with the values of

x and y, the aluminum concentrations outside and inside the
well, respectively. 75 intervals are used. A data file of
LOG10(M11) versus E is generated.

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 M1, M2, M1l

DIMENSION TI1 (4)

COMPLEX*16 T1

FK 26.2451

Z20 = 0

vo = 0

NST = 75

PRINT*, 'ENTER WELL DEPTH |V1| IN eV’

READ*, V1

PRINT*, 'ENTER WELL WIDTH a IN nm'

READ*, A

PRINT*, 'ENTER THE APPLIED FIELD STRENGTH F IN eV/nm'
READ*, F

PRINT*, 'ENTER Al CONTENT x OUTSIDE WELL'

READ*, ¥YMAX

PRINT*, '"ENTER Al CONTENT y INSIDE WELL'

READ*, XMIN

Ml = 0.0636 + 0.0552 * XMAX + (0.0092 * XMAX**2)
M2 = 0.0636 + 0.0552 * XMIN + (0.0092 * XMIN**2)
Vl = -v1

VAP = F * A

V2 = V1 - VAP

VF = V0 - VAP

DLTAV = ABS (V1 - V2)

DLTAV = DLTAV/(NST)
DLTAZ = A/NST
OPEN (UNIT = 13, FILE = 'STARKMASS.DAT', STATUS = 'NEW')

PRINT 10, 'E(eV)', 'MI11l'
FORMAT ( //,1X, A7, 1X, All, 1X, / 1X, 24('=") )

Here starts the energy loop
EDIV = V1/2000

DO 20 NE = 1, 2000
E = (NE * EDIV)

Z =20

Ti{(l) = (1.0, 0.0 )
Ti(2) = (1.0, 0.0 )
T1(3) = ( 0.0, 0.0 )

T1(4) = ( 0.0, 0.0 )
CALL EFFMASSTEP (E,V0,V1,M1,M2,FK,Z,T1)
IF (DLTAV .EQ. 0) THEN
Z =20 + A
VL = V2
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VR = VF
CALL EFFMASSTEP (E,VL,VR,M2,M1,FK,Z,T1)
GO TO 29
END IF
DO I =1, (NST - 1)
Z = 2 + DLTAZ
VL = V1l - (I - 1) * DLTAV
VR = VL - DLTAV
CALL EFFMASSTEP (E,V1,VR,M2,M2,FK,Z,T1)
END DO
VL = V2
VR = VF
z = 20 + A
CALL EFFMASSTEP (E,VL,VR,M2,M1,FK,Z,T1)

the control passes to statement 29 from the block IF
above which handles the case of zero-field

M1l = ABS(T1(1))

M1l = LOG10({M1ll)

PRINT 30, E,Ml1l

FORMAT (F7.3,E12.3)

WRITE (13,300) E, M1l1

FORMAT (2E15.7)
CONTINUE

END OF E-LOOP

END
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PROGRAM AIRYWELL

THIS PROGRAM CALCULATES THE RATIO OF COEFFICIENTS OF THE WAVE
FUNCTION ON THE DOWNSTREAM SIDE OF A SINGLE QUANTUM WELL, (F/E),
AS A FUNCTION OF INCIDENT ENERGY AND APPLIED ELECTRIC FIELD.

A PLOT IS THEN GENERATED GIVING THIS RATIO VERSUS ENERGY. WHERE-
EVER THE RATIO IS MAXIMIZED, A VIRTUAL STATE EXISTS. THIS PROGRAM
ASSUMES A GaAs-Al(0.5)Ga(0.5)As 3 nm WIDE WELL, 0.5 eV DEEP, WITH
CONSTANT EFFECTIVE MASS m* = 0.0636.

DIMENSION EARR(1000), RARR(1000)

W=1.5

vo = 0.4

PRINT*, '"WHAT APPLIED FIELD STRENGTH IN V/nm?'
READ*, FAPP

EMAX = FAPP * W

EMIN = -V0 - FAPP * W

FAPP FAPP * 1.0ES

OPEN GKS
CALL GOPKS (6,1)

OPEN THE WORKSTATION
CALL GOPWK (1,2,1)
ACTIVATE THE WORKSTATION

CALL GACWK (1)

DO I =1, 1000
A = 1.2103E-3
B = 1.2147E6
EARR(I) = EMIN + (I/1000.0) * (EMAX - EMIN)
X1NEG = A* (-W)* FAPP**(1./3.) + B*EARR(I)/FAPP** (2. /3.)
X1POS = A* (-W)*FAPP**(1./3.) + B*{(EARR(I) + VQ)/FAPP**(2./3.)
X2NEG A* (W) *FAPP** (1./3.) + B*(EARR(I) + V0)/FAPP**(2./3.)
X2POS = A* (W) *FAPP**(1./3.) + B*EARR(I)/FAPP**(2./3.)
C = AT (-X1NEG) *BID(-X1PQS) - AID(-X1NEG) *BI (-X1POS)

= AI(-X1POS) *AID(-X1NEG) - AID(-X1POS)*AI (-X1NEG)

= AI (-X2NEG) /AI (-X2POQS)

BI (-X2NEG) /AI (~-X2PO0OS)

BI (-X2POS) /AI {(-X2P0OS)

AID (-X2NEG) /AID (-X2POS)

BID (-X2NEG) /AID (-X2POS)

BID (-X2P0OS) /AID (~-X2PQS)

C/D* (S-P) +T-20Q

= U * (C/D*P + Q) -R* (C/D*XS + T)
RARR(I) = F/E

END DO

CALL EZXY (EARR,RARR,1000,'f/e")

[ Nele RO B el e

DEACTIVATE AND CLOSE THE WORKSTATION
CALL GDAWK (1)
CALL GCLWK (1)
CLOSE GKS
CALL GCLKS
STOP
END
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